
Maths 260 Lecture 15

Topic for today

Numerical methods for systems
Existence and Uniqueness Theorem for systems

Reading for this lecture

BDH Section 2.4

Suggested exercises

BDH Section 2.4: 7, 8, 9, 10

Reading for next lecture

BDH Section 2.3, pp 175–178 (1st ed) 185–188 (2nd ed); Section 3.1

Today’s handout

Lecture 15 notes
Tutorial 5 questions

Section 2.3 Numerical Methods for Systems

Numerical methods used for first order equations can be generalized to systems of
first order equations.

Example: Euler’s Method for systems

Given the IVP

dx

dt
= f(t, x, y),

dy

dt
= g(t, x, y),

with x(t0) = x0, y(t0) = y0, then Euler’s Method calculates the approximate solution
at t1 = t0 + h to be

x(t0 + h) ≈ x0 + hf(t0, x0, y0),

y(t0 + h) ≈ y0 + hg(t0, x0, y0)

Can repeat to find approximation after n steps.
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Example: Use Euler’s method with h = 0.1 to calculate an approximate solution at
t = 0.2 to the IVP

dx

dt
= t + y

dy

dt
= y2 − x

when x(0) = 1, y(0) = 0.

Vector Form of Euler’s Method

Let

X(t) =











x1(t)
x2(t)

...
xn(t)











, F(t,X) =











f1(t, x1, x2, . . . , xn)
f2(t, x1, x2, . . . , xn)

...
fn(t, x1, x2, . . . , xn)











, X0 =











x1(t0)
x2(t0)

...
xn(t0)











.

Then the Euler approximation to the solution of the IVP

dX

dt
= F(t,X), X(t0) = X0

at t0 + h is
X(t0 + h) ≈ X0 + hF(t0,X0)
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It can be proved that Euler’s method for systems is first order, i.e., the error in the
ith component of X is

|Ei(h)| ≈ kih

in the limit of small h, where ki is a constant. Thus, halving stepsize will approxi-
mately halve the error in the estimated value of each component in X.
Improved Euler and 4th order Runge-Kutta methods also generalise to systems and
are order 2 and 4 respectively.

Existence and Uniqueness Theorem for systems

Consider the IVP
dY

dt
= F(t,Y), Y(t0) = Y0.

If F is continuous and has continuous first partial derivatives then there is an ε > 0
and a function Y(t) defined for t0 − ε < t < t0 + ε such that Y(t) is a solution to the
IVP. For t in this interval, the solution is unique.

Interpretation of EU Theorem: If a system of equations is ‘nice’ enough, a
solution to an IVP exists and is unique. In particular, two different solutions cannot
start at the same t at the same point in phase space.

For autonomous systems, two different solutions that start at the same place in phase
space but at different times will correspond to the same solution curve, i.e., solution
curves cannot meet or cross in phase space.
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Example: The phase portrait for the following differential equation is given below.
It looks as though different solution curves meet/cross but EU Theorem ensures they
do not. No such guarantee exists for solution curves of non-autonomous systems;
solution curves for non-autonomous systems frequently cross in phase space.

dx

dt
= y

dy

dt
= −2.5 + y + x2 + xy

 dx/dt = y                    
 dy/dt = − 2.5 + y + x x + x y
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Important ideas from today

Numerical methods work for systems of DEs in a similar way as for single equations.

‘Nice’ IVPs have unique solutions.

Solution curves for autonomous systems do not cross or meet in phase space.
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