
1 Complex Numbers

1.1 Introduction

There exist linear systems for which there are no straight-line solutions.

Example: Consider the system

dY

dt
=

(

1 −2
2 1

)

Y.

Slope field and some solutions

 dx/dt = x − 2 y
 dy/dt = 2 x + y
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What goes wrong?

Calculate the eigenvalues:

0 = det

(

1 − λ −2
2 1 − λ

)

= λ2 − 2λ + 5.

So the quadratic formula gives:

λ =
2 ±

√
4 − 20

2
=

2 ±
√
−16

2
.

1



We need the square root of a negative number!

Let’s suppose that we know what the square root of -1 is. We’ll call it i. Then we
could simplify our expression for λ:

λ =
2 ±

√
−16

2
=

2 ± 4
√
−1

2
= 1 ± 2i.

This is an example of a complex number. Since complex numbers show up in the
theory of differential equations (and in lots of other areas of mathematics), we
need a good understanding of them.

1.2 Complex Numbers

Definition: An expression a + bi, where a and b are real numbers, is called a
complex number. a is called the real part of the complex number, b is called the
imaginary part.

Notation: a = Re z, b = Im z.

We define the following operation on complex numbers:

1. Addition:

(a + bi) + (c + di) = (a + c) + (b + d)i. (1)

Example: (5 + 3i) + (6 − 7i) = 11 − 4i.

2. Subtraction:

(a + bi) − (c + di) = (a − c) + (b − d)i. (2)

3. Multiplication:

(a + bi)(c + di) = (ac − bd) + (ad + bc)i. (3)

4. Division:

(a + bi)/(c + di) =
ac + bd

c2 + d2
+

bc − ad

c2 + d2
i. (4)

Note:
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1. The normal rules of algebra apply to complex numbers because they form a
field under the definitions above ( They allow us to use distributive, associa-
tive, commutative rules etc.)

2. Because of (1), we do not need to memorise the definitions of the operations.
Just use the fact i2 = −1 and apply the usual rules of algebra.
Example:

(5 + 4i)(6 − 7i) = 30 + 24i − 35i − 28i2

= 30 + 24i − 35i + 28

= 58 − 11i

For division, we may use the fact that

(a + bi)(a − bi) = a2 + abi − abi + b2 = a2 + b2 real.

Definition: a − bi is called the complex conjugate of a + bi.

Notation: If z = a + bi, then z̄ = a − bi denotes complex conjugate of z.

Division rule: To work out a+bi
c+di

, multiply numerator and denominator by conju-
gate of the denominator:

5 + 2i

3 − 4i
=

5 + 2i

3 − 4i

3 + 4i

3 + 4i
=

15 − 8 + 6i + 20i

32 + 42
=

7 + 26i

25

Since i2 = −1, we can think of i as being a square root of −1 (i =
√
−1), another

square root is −i.

Example:
m2 + 2m + 2 = 0

The solutions are:

m = =
−2 ±

√
−4

2

=
−2 ± 2

√
−1

2
= −1 ± i.

So, m1 = −1 − i, m2 = −1 + i are two solutions. Notice that m2 = m̄1 (
complex conjugate). Complex roots always occur in complex conjugate pairs if
the polynomial has real coefficients.
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1.3 Complex Plane (or Argand diagram)

Since complex numbers are determined by two real numbers, it is natural to plot
them on the usual coordinate plane. The vertical axis is called the imaginary axis

and the horizontal axis is called the real axis. The real axis consists of purely real
numbers. The imaginary axis consists of points of the form bi, these are called
purely imaginary numbers. Complex conjugates are mirror images of each other
in the real axis.

bi

a

imaginary axis

real axis

a + bi

Figure 1: Argand Diagram

Definition: The absolute value (or modulus) of a complex numbers z = a + bi
is defined to be |z| =

√
a2 + b2. Notice that |z| is the distance between the origin

and the point z.

Example: z = 3 − 4i, |z| =
√

9 + 16 = 5.

Notice that |z| =
√

z or |z|2 = zz̄ because zz̄ = a2 + b2.

1.4 The polar form of complex numbers

Clearly a = r cos θ, b = r sin θ, where r = |z|, θ is called an argument of z and is
denoted argz.

z = r(cos θ + i sin θ) (polar form)
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Notice that if θ is an argument of z then so is θ+2mπ, for any integer m. Sometimes
it’s useful to restrict arguments to be in [0, 2π) or some other interval of length
2π. Such arguments are called principal arguments and are often denoted Arg z.

bi

a

imaginary axis

real axis

a + bi

θ

r =
√

a2 + b2

Figure 2: Polar coordinates

Multiplication of polar forms: Let

z1 = r1(cos θ1 + i sin θ1), z2 = r2(cos θ2 + i sin θ2)

be any two complex numbers, then

z1z2 = r1r2(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + cos θ2 sin θ1))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

Hence,

multiplying ⇔ absolute value = product of absolute values

argument = sum of arguments

It wasn’t obvious from the definition of mutiplication of complex numbers (3), that
the multiplication has such a geometric interpretation!

This in turn gives us:

De Moivre’s formula

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ),

a very useful formula.
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Example: Express cos 3θ, sin 3θ in terms of cos θ, sin θ.

From the de Moivre’s formula, we have

cos(3θ) + i sin(3θ) = (cos(θ) + i sin(θ))3

= cos3(θ) + i3 cos2(θ) sin(θ) − 3 cos(θ) sin2(θ) − i sin3(θ))

= cos3(θ) − 3 cos(θ) sin2(θ) + i(3 cos2(θ) sin(θ) − sin3(θ)).

So

cos(3θ) = cos3(θ) − 3 cos(θ) sin2(θ)

sin(3θ) = 3 cos2(θ) sin(θ) − sin3(θ).

Polar forms are sometimes useful for solving equations.

Example: Solve z3 = 1.
z = 1 is obviously a solution. Any others? Let’s write

z = r(cos θ + i sin θ),

where r = |z| > 0. Then

z3 = r3(cos 3θ + i sin 3θ)

and therefore
r3(cos 3θ + i sin 3θ) = 1

and

r3 = 1, and 3θ = 0 + 2nπ ⇔ θ1 =
2nπ

3
, n = 0, 1, 2...

So the solutions will be

z = cos 0 + i sin 0, cos
2π

3
+ i sin

2π

3
, cos

4π

3
+ i sin

4π

3

i.e.

z = 1,−1

2
+ i

√
3π

2
,−1

2
− i

√
3π

2
.

Notice that for n = 3, 4..., the solutions given coincide with the above solutions
because of the periodicity of cos and sin.

Note Fundamental Theorem of Algebra. A polynomial equation of degree n has
n roots (some of these may be repeated). More precisely,

anz
n + an−1z

n−1... + a0 = an(z − z1)(z − z2)...(z − zn).
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This is true because, roughly to say, the polynomial is dominated by the term
anz

n for large enough |z| = M and the mapping of the disc |z| ≤ M through
the function anzn covers the disc |z| ≤ |an|Mn n times. It means the equation
anz

n = b with b a complex number b ≤ |an|Mn has n roots. The other terms in
the polynomial do slightly change the mapping, however the number of roots of
the whole polynomial will not change.

Derivatives of a complex-valued function of a real variable

f(t) = u(t) + iv(t).

We define
f ′(t) = u′(t) + iv′(t).

Complex Exponentials

Consider the complex valued function

f(θ) = cos(θ) + i sin(θ)

De Moivre’s formula gives
f(θ)n = f(nθ)

for any integer n. It shows f(θ) has a similar behavior to the real-valued exponen-
tial function eaθ. Moreover the multiplication rule gives

f(θ1)f(θ2) = f(θ1 + θ2) (5)

which is again similar to real valued exponential function. Actually, real exponen-
tial functions can be characterized as a continuous functions satisfying (5). We
expect f(θ) behaves just as real-valued exponential function.

Exercise: Show that f ′(θ) = if(θ).

This suggests f(θ) might be considered as the function eaθ with a = i. Notice
that f(0) = 1 so this is consistent with the real exponential. All this prompts the
definition:

Definition: If θ is real,

eiθ = cos θ + i sin θ Euler’s formula.

Euler discovered this when he was working on differential equations!
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Note that we already know eiθ1eiθ2 = ei(θ1+θ2).

Example: What is eiπ, eiπ/2eiπ/4?

The exponential of other complex numbers: If z = x + iy, we define

ez = ex+iy = exeiy = ex(cos y + i sin y).

Note that

ez1ez2 = ex1+iy1ex2+iy2

= ex1ex2eiy1eiy2

= ex1+x2eiy1+iy2

= ez1+z2

Theorem If m is a complex number, then

d

dt
emt = memt.

Proof: Write m = a + ib. Then

emt = eat+ibt

= eat(cos(bt) + i sin(bt))

= u(t) + iv(t).

where u(t) = eat cos(bt), v(t) = eat sin(bt). Clearly,

du

dt
= aeat cos(bt) − beat sin(bt)

dv

dt
= aeat sin(bt) + beat cos(bt).

Then

d

dt
emt = aeat cos(bt) − beat sin(bt) + iaeat sin(bt) + ibeat cos(bt).

But

memt = (a + ib)eat(cos(bt) + i sin(bt))

= aeat cos(bt) − beat sin(bt) + iaeat sin(bt) + ibeat cos(bt).
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Example:
d

dt
e(3+i)t = (3 + i)e(3+i)t.

Note: For x real, we know ex = 1+x+ x2

2!
+ x3

3!
.... This power series also converges

for x complex and agrees with ex for x complex. This can be proved using power
series for cos x and sin x.

Example: Find all solutions of the form y = eλt to the differential equation

y′′(t) + 2y′(t) + 10y(t) = 0.

Solution: If y = eλt then y′ = λeλt and y′′ = λ2eλt. Putting these into the DE
gives

λ2eλt + 2λeλt + 10eλt = 0

so (λ2 + 2λ + 10)eλt = 0

so (λ2 + 2λ + 10) = 0

The quadratic formula gives
λ = −1 ± 3i,

which gives the two solutions

e(−1+3i)t = e−t(cos 3t + i sin 3t),

e(−1−3i)t = e−t(cos−3t + i sin−3t) = e−t(cos 3t − i sin 3t)

Note: We’ll see later that the general solution of such equations can be found
by taking a linear combination of the real and imaginary parts of the complex
exponential solutions. So the general solution of the equation above is

y = c1e
−t cos 3t + c2e

−t sin 3t.
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1.5 Problems

1. Find all of the solutions to the equation z3 + 27 = 0 and plot them on a
graph.

2. Find all of the solutions to the equation z4 + 81 = 0 and plot them on a
graph.

3. Calculate
1 + 5i

3 − 2i
.

4. Calculate the polar forms of z1 =
√

3 + i and z2 = 1 + i and plot z1 and
z2 on a graph. Calculate the polar forms of z1z2 and z1/z2 and show these
complex numbers on the same graph. Show the arguments and absolute
values (moduli) of these complex numbers on your graph.

5. Solve
y′′ + 10y′ + 29y = 0, y(0) = 1, y′(0) = 2.
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1.6 Solutions

1. z3 = −27 so |z|3 = 27 and thus |z| = 3. Hence we can write z = 3eiθ.
Plugging this into the equation gives e3iθ = −1. Hence 3θ = π + 2nπ, where
n is an integer. Hence θ = π/3 + 2nπ/3, n = 0, 1, 2. There are no more
solutions because starting at n = 3, the previous solutions reappear. Note
that you could describe these solutions with negative values of θ as well
(e.g. take n = 1, −1, 0). The important thing is to get the correct complex
numbers which are

z = −3, for n = 1,

z = 3eπi/3 =
3

2
(1 + i

√
3), for n = 0,

z = 3e−πi/3 =
3

2
(1 − i

√
3), for n = −1.

x

y

-3

3eπi/3

3e−πi/3

2. z4 = −81 so |z|4 = 81 and thus |z| = 3. Hence we can write z = 3eiθ.
Plugging this into the equation gives e4iθ = −1. Hence 4θ = π + 2nπ, where
n is an integer. Hence θ = π/4 + nπ/2, n = 0, 1, 2, 3. There are no more
solutions because starting at n = 4, the previous solutions reappear. Note
that you could describe these solutions with negative values of θ as well (e.g.
take n = −2, −1, 0, 1). The important thing is to get the correct complex
numbers as shown on the graph below.
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x

y

3eπi/43e3πi/4

3e5πi/4 3e7πi/4

3.

1 + 5i

3 − 2i
=

(1 + 5i)

(3 − 2i)

(3 + 2i)

(3 + 2i)
=

3 − 10 + 15i + 2i

32 + 22
= − 7

13
+

17

13
i.

4. |z1| =
√

(3 + 1) = 2. Hence z1 = 2eiθ1 , where θ1 = tan−1(1/
√

3) = π/6.

Similarly, z2 =
√

2eiπ/4. z1z2 = 2
√

2ei(π/6+π/4) = 2
√

2e5πi/12. Also, z1/z2 =√
2ei(π/6−π/4) =

√
2e−πi/12. Of course you could calculate these without using

the polar form as well. Here is the picture:

x

y

1 2

1

2
z2 z1

z1z2

z1/z2

5.
y′′ + 10y′ + 29y = 0, y(0) = 1, y′(0) = 2.
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λ2 + 10λ + 29 = 0,

λ =
−10 ±

√
100 − 116

2

=
−10 ±

√
−16

2
= −5 ± 2i.

Hence (see the last example before the problems)

y = c1e
−5t cos(2t) + c2e

−5t sin(2t)

y′ = −5c1e
−5t cos(2t) − 2c1e

−5t sin(2t) − 5c2e
−5t sin(2t) + 2c2e

−5t cos(2t).

We need

c1 = 1,

−5c1 + 2c2 = 2,

thus

c2 =
7

2
.

y = e−5t cos(2t) +
7

2
e−5t sin(2t).
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