Solutions to Assignment 4

1. (a) (4 marks) First we use Euclidean Algorithm to find gcd(946, 374):

n	\boldsymbol{x}	y	
946	1	0	r_1
374	0	1	r_2
198	1	-2	$r_3 = r_1 - 2r_2$
176	-1	3	$r_4 = r_2 - r_3$
22	2	-5	$r_3 = r_1 - 2r_2$ $r_4 = r_2 - r_3$ $r_5 = r_3 - r_4$ $r_6 = r_5 - 8r_4$
0	-17	43	$r_6 = r_5 - 8r_4$

From this we see that gcd(946, 374) = 22, and that $22 = 946 \cdot 2 + 374 \cdot (-5)$. Since 18 is not divisible by 22, it follows that 946x + 374y = 18 has no integer solution.

(b) (4 marks) Use Euclidean Algorithm to find gcd(976, 3742):

n	y	x	
3742	1	0	r_1
976	0	1	r_2
814	1	-3	$r_3 = r_1 - 3r_2 r_4 = r_2 - r_3$
162	-1	4	$r_4 = r_2 - r_3$
4	6	-23	$r_5 = r_3 - 5r_4$
2	-241	924	$r_6 = r_4 - 40r_5$
0	*	*	$r_7 = r_5 - 2r_6$

From this we see that gcd(976, 3742) = 2, and that $2 = 976 \cdot 924 + 3742 \cdot (-241)$. Since 44 = 22 * 2, it follows that

$$44 = 976 \cdot 20328 + 3742 \cdot (-5302)$$

and (20328, -5302) is a solution. The general solution of the equation 976x + 3742y = 44 is $x = 20328 - \frac{3742}{2}t = 20328 - 1871t$, $y = -5302 + \frac{976}{2}t = -5302 + 488t$ for $t \in \mathbb{Z}$.

(c) (7 marks) Use Euclidean Algorithm to find gcd(976, 374):

n	x	y	
976	1	0	r_1
374	0	1	r_2
228	1	-2	$r_3 = r_1 - r_2$
146	-1	3	$r_4 = r_2 - r_3$
82	2	-5	$r_5 = r_3 - r_4$
64	-3	8	$r_6 = r_4 - r_5$
18	5	-13	$r_7 = r_5 - 3r_6$
10	-18	47	$r_8 = r_6 - r_7$
8	23	-60	$r_9 = r_7 - r_8$
2	-41	107	$r_{10} = r_8 - r_9$
0	*	*	$r_{11} = r_9 - 4r_{10}$

Due: 12 May 2005

From this we see that gcd(976, 374) = 2, and that $2 = 976 \cdot (-41) + 374 \cdot 107$. Since 22 = 11 * 2, it follows that

$$22 = 976 \cdot (-451) + 374 \cdot 1177$$

and (-451, 1177) is a solution. The general solution of the equation 976x + 374y = 22 is $x = -451 - \frac{374}{2}t = -451 - 187t$, $y = 1177 + \frac{976}{2}t = 1177 + 488t$ for $t \in \mathbb{Z}$.

Now $0 \le -451 - 187t \le 40 \iff 451 \le -187t \le 491 \iff -\frac{491}{187} \le t \le -\frac{451}{187}$. Since there is no such t in \mathbb{Z} , it follows that 976x + 374y = 22 has no solutions with $0 \le x \le 40$.

2. (a) (5 marks)
$$2x^2 - 3x - 4 \equiv 0 \pmod{5} \iff \bar{2}\bar{x}^2 + \bar{2}\bar{x} + \bar{1} = \bar{0} \text{ in } \mathbb{Z}_5.$$
 Now

$$\bar{x} = \bar{0} \implies \bar{2}\bar{x}^2 + \bar{2}\bar{x} + \bar{1} = \bar{1}$$

$$\bar{x} = \bar{1} \implies \bar{2}\bar{x}^2 + \bar{2}\bar{x} + \bar{1} = \bar{0}$$

$$\bar{x} = \bar{2} \implies \bar{2}\bar{x}^2 + \bar{2}\bar{x} + \bar{1} = \bar{3}$$

$$\bar{x} = \bar{3} \implies \bar{2}\bar{x}^2 + \bar{2}\bar{x} + \bar{1} = \bar{0}$$

$$\bar{x} = \bar{4} \implies \bar{2}\bar{x}^2 + \bar{2}\bar{x} + \bar{1} = \bar{1}.$$

Thus $\bar{x} = \bar{1}$ or $\bar{3}$ are the solutions in \mathbb{Z}_5 , and so $x \in \bar{1} \cup \bar{3}$ are solutions, that is, $x \in \{5k+1, 5k+3 : k \in \mathbb{Z}\}$.

(b) (7 marks) $189x \equiv 28 \pmod{56} \iff 189x + 56y = 28 \text{ for some } y \in \mathbb{Z} \iff 27x + 8y = 4 \text{ for some } y \in \mathbb{Z} \iff 27x \equiv 4 \pmod{8} \iff \overline{3} \cdot_{8} \overline{x} = \overline{4} \text{ in } \mathbb{Z}_{8}.$

Now

Thus $3x \equiv 4 \pmod{8} \iff \bar{x} = \bar{4} \iff x \in \bar{4}$, that is, $x \in \{8k + 4 : k \in \mathbb{Z}\}$.

(c) (8 marks)

$$946x \equiv 26 \pmod{2316} \iff (\exists y \in \mathbb{Z})(946x + 2316y = 26) \iff (\exists y \in \mathbb{Z})(473x + 1158y = 13).$$

First we use Euclidean Algorithm to find gcd(473, 1158):

n	y	s	
1158	1	0	r_1
473	0	1	r_2
212	1	-2	$r_3 = r_1 - 2r_2$
49	-2	5	$r_4 = r_2 - 2r_3$
16	9	-22	$r_5 = r_3 - 2r_4$
1	-29	71	$r_6 = r_5 - 3r_4$

From this we see that gcd(1158, 473) = 1, and that $1158 \cdot (-29) + 473 \cdot (71) = 1$.

Thus $13 = 1158 \cdot (-377) + 473 \cdot (923)$ and $x = 923 - \frac{1158}{1}t = 923 - 1158t$ for any $t \in \mathbb{Z}$. Now $x > 0 \iff 923 - 1158t > 0 \iff t < \frac{923}{1158} < 1$, so t = 0 and x = 923 is the smallest positive solution in \mathbb{Z} .

3. (8 marks)
$$14 \mid 21(15n+27)(n+28) \iff 21(15n+27)(n+28) \equiv 0 \pmod{14}$$
. Now $21(15n+27)(n+28) \equiv 7(n+13)n \equiv 7n(n-1) \pmod{14}$.

If
$$n = 2m$$
, then $7n(n-1) = 14m(2m-1) \equiv 0 \pmod{14}$.

If
$$n = 2m + 1$$
, then $7n(n - 1) = 14(2m + 1)m \equiv 0 \pmod{14}$.

Thus
$$21(15n + 27)(n + 28) \equiv 0 \pmod{14}$$
 for all $n \in \mathbb{N}$ and $14 \mid 21(15n + 27)(n + 28)$.

4. (a) (5 marks) We first divide b(x) into a(x), then divide the remainder into b(x), and so on, until we get a remainder of 0.

so
$$a(x) = b(x) + 5x^2 + 4x - 1$$
, and then

But now it is easy to see x+1 is a factor of $5x^2+4x-1$ since $5\cdot (-1)^2+4\cdot (-1)-1=0$. Hence factorizing $5x^2+4x-1=(x+1)(5x-1)$. Thus the greatest monic common divisor is

$$\gcd(a(x),b(x)) = \gcd(b(x),5x^2 + 4x - 1) = \gcd(5x^2 + 4x - 1, -\frac{29}{25}x - \frac{29}{25}) = x + 1.$$

(b) (i) Using long division in $\mathbb{Z}_5[x]$ we have

Thus

$$x^4 + 2x^3 + 4x + 1 = (3x^3 + x^2 + x + 2)(2x) + (3x^2 + 1),$$

so that q(x) = 2x and $r(x) = 3x^{2} + 1$.

(ii) (6 marks) Using long division again, we have

Thus

$$3x^3 + x^2 + x + 2 = (3x^2 + 1)(x + 2) + 0.$$

It follows that $3x^2 + 1$ is a gcd and $2(3x^2 + 1) = x^2 + 2$ is the monic gcd(f(x), g(x)). Now

$$3x^{2} + 1 = (x^{4} + 2x^{3} + 4x + 1) - (3x^{3} + x^{2} + x + 2)(2x),$$

so that

$$x^{2} + 2 = 2(x^{4} + 2x^{3} + 4x + 1) + (3x^{3} + x^{2} + x + 2)(x).$$

Thus u(x) = 2 and v(x) = x.

- **5.** (a) (4 marks) If a * b = c * b, then $a = a * e = a * (b * b^{-1}) = (a * b) * b^{-1} = (c * b) * b^{-1} = c * (b * b^{-1}) = c * e = c$.
 - (b) **(4 marks)** If a * b = e, then a * (b * a) = (a * b) * a = e * a = a = a * e, so by Cancellation, b * a = e.
- **6.** (a) (9 marks) For any $x, y \in A$, $x * y = 3xy \in \mathbb{R}$ and $3xy \neq 0$, so that * is a binary operation on A.

x * (y * z) = x * (3yz) = 3x(3yz) = 9xyz and (x * y) * z = 3(x * y)z = 3(3xy)z = 9xyz. Thus x * (y * z) = (x * y) * z.

Since x * y = 3xy = 3yx = y * x, * is commutative.

If $e = \frac{1}{3}$, then x * e = 3xe = x for all $x \in A$ and so e is the identity.

For $a \in A$, let $b = \frac{1}{9a}$. Then $b \in A$ and a * b = 3ab = e and b is the inverse of a.

It follows that (A, *) is an abelian group.

(b) (3 marks) Take $x = y = \sqrt{2}$, so that $x, y \in T$. But $x * y = 3xy = 6 \notin T$, so * is not a binary operation on T.