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MATHS 255 Lecture outlines for week 9

Monday: Symmetry Groups

In this section we will discuss a very important class of groups, the symmetry groups of solid objects.

Definition. A symmetry of a solid object is a way of moving it so that it ends up in the space it originally
occupied. We are only interested in the final position of the object, not how it got there, so for example a
clockwise rotation of 90◦ is the same as an anticlockwise rotation of 270◦.

For example, consider the set of symmetries of a square. We can rotate it anticlockwise through 90◦,
180◦ or 270◦. We can also flip it over either horizontally or vertically, or along the main diagonal or the
other diagonal. And, of course, we can simply put the square back where we found it. We denote these
symmetries by R90, R180, R270, H , V , D, D′ and R0 respectively. We can represent these in Figure 1: we
imagine that the square is transparent and has the letter R on it.

H V D D′

R0 R90 R180 R270

Figure 1: Symmetries of the square

To form a group, we need an operation. For symmetries A and B, we define A∗B to be the symmetry which
has the same effect as B followed by A. For example, R90 ∗ R180 = R270. Less obviously, R90 ∗H = D′.
And we obviously have R0 ∗A = A = A ∗R0 for any A.

Exercise 1. Complete the Cayley table of ∗.
∗ R0 R90 R180 R270 H V D D′

R0 R0 R90 R180 R270 H V D D′

R90 R90 D′

R180 R180

R270 R270

H H
V V
D D
D′ D′

Proposition 2. The set of symmetries of the square forms a group under the operation ∗.
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The hardest part of proving this would be to check associativity: there are 83 = 512 ways of choosing A,
B and C to check that A ∗ (B ∗ C) = (A ∗ B) ∗ C. But the symmetries are functions, and the operation
we have is function composition, and we know that composition of functions is an associative operation.

The symmetry group of the square is usually denoted D4. More generally, the symmetries of a regular
n-gon form a group with 2n elements, usually denoted Dn and called the dihedral group of order 2n.

Tuesday: The full symmetric group Sn

Related to the symmetry groups we discussed last time are the full symmetric groups. The group Sn is
defined to be the set of all bijections (one-to-one and onto functions) from {1, 2, . . . , n} to itself. Again,
the group operation is “composed with”, in other words f ∗ g = f ◦ g.
Exercise 3. How many elements does Sn have?

We can represent the elements of Sn in matrix form, as follows. For our example, we will fix
n = 4. We represent the element f by the 2 × 4 matrix which has

[
1 2 3 4

]
as its first row and[

f(1) f(2) f(3) f(4)
]

as its second row. For example the bijection which has f(1) = 3, f(2) = 4,

f(3) = 2, f(4) = 1 is represented by the matrix
[
1 2 3 4
3 4 2 1

]
. We can then work out the composition of

two elements. For example, we have[
1 2 3 4
3 4 2 1

]
∗

[
1 2 3 4
4 3 2 1

]
=

[
1 2 3 4
1 2 4 3

]
and [

1 2 3 4
4 3 2 1

]
∗

[
1 2 3 4
3 4 2 1

]
=

[
1 2 3 4
2 1 3 4

]
.

To answer the previous exercise, we can see that there are n ways to fill in the first entry in row 2, n− 1
ways to fill in the next, n − 2 for the next and so on, giving a total of n! ways to write such a matrix.
Thus |Sn| = n!.

Commutativity and abelian groups

For any real numbers x and y we have x+y = y+x. Thus the group operation in (R,+) is a commutative
operation. However, there is no need for every group operation to be commutative. For example, looking
back at the group D4 of symmetries of the square, we have that R90 ∗H = D′, whereas H ∗R90 = D.

Definition. A group (G, ∗) is abelian if ∗ is a commutative operation, and non-abelian otherwise.

So (R,+) is an abelian group whereas D4 is a non-abelian group.

Notice that even if G is a non-abelian group, there will still be some elements x and y satisfying x∗y = y∗x.
For example, this will be true if x = y, or if x = e or y = e (where e is the identity element).

Exercise 4. The elements of S3 are e =
[
1 2 3
1 2 3

]
, ϕ =

[
1 2 3
2 3 1

]
and ψ =

[
1 2 3
3 1 2

]
, α =

[
1 2 3
2 1 3

]
,
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β =
[
1 2 3
3 2 1

]
, γ =

[
1 2 3
1 3 2

]
. Complete the Cayley table for S3.

∗ e ϕ ψ α β γ
e
ϕ
ψ
α
β
γ

Find elements x and y such that x ∗ y 6= y ∗ x.
Proposition 5. Let n be an integer with n ≥ 3. Then Sn is non-abelian.

Cycles in Sn

Definition. A cycle in Sn is an element of Sn such that there exist distinct i1, i2, . . . , ik ∈ {1, 2, . . . , n}
with f(ij) = ij+1 for 1 ≤ j < k, f(ik) = i1 and f(j) = j for j /∈ {i1, i2, . . . , ik}. We denote this cycle by
(i1 i2 . . . ik).

For example, in S8 we have

(1 3 4 6) =
[
1 2 3 4 5 6 7 8
3 2 4 6 5 1 7 8

]
.

Exercise 6. Write the elements ϕ, ψ, α, β and γ of S3 in cycle form.

Thursday: Isomorphisms and homomorphisms

We have already used the word “isomorphism” in Section 5.4 of the textbook, when we said that two
partially ordered sets (A,�A) and (B,�B) are order-isomorphic if there is a bijection f : A → B such
that for every x, y ∈ A,

f(x) �B f(y) if and only if x �A y.

We can think of this as meaning that B is really just a “re-labelled” version of A, with exactly the same
structure.

We can do the same thing for groups. In this case, the structure we have is not an order relation but a
binary operation, but the idea—that the isomorphism should preserve the structure—is exactly the same.

Definition. Let (G, ∗) and (H, �) be groups. A homorphism from G to H is a function f : G→ H such
that for all x, y ∈ G,

f(x ∗ y) = f(x) � f(y).

An isomorphism from G to H is a homomorphism from G to H which is also a bijection. If there is such
an isomorphism, we say that G and H are isomorphic, written G ≈ H.

Example 7. Let n ∈ N. The function f : Z → Zn given by f(x) = x is a homomorphism, since for every
x, y ∈ Z we have x+ y = x+ y. However, it is not an isomorphism because it is not 1–1: we have 0 6= n
but 0 = n.
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Example 8. Let U(10) = {1, 3, 7, 9}. We define an operation � by declaring that, for x, y ∈ U(10), x � y
is the remainder modulo 10 of x · y. Let Z4 = {0, 1, 2, 3}, and define an operation ∗ on Z4 by declaring
that x ∗ y = x+4 y. So we have the Cayley tables

� 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

∗ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Then the function f : Z4 → U(10) given by f(0) = 1, f(1) = 3, f(2) = 9, f(3) = 7 is an isomorphism.

Proposition 9. Let G and H be groups with identity elements eG and eH respectively, and let f : G→ H
be a homorphism. Then f(eG) = eH .

Proposition 10. Let G and H be groups with identity elements eG and eH respectively, and let f : G→ H
be an isomorphism. Then, for every x ∈ G, we have

f(x) � f(y) = eH if and only if x ∗ y = eG.

Exercise 11. Let G be the group given by the group table

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Show that G is not isomorphic to Z4.

Friday: Subgroups

From now on we will use a convenient convention: we will omit the group operation symbol, just as when
we are multiplying numbers we omit the ·. So for example we will write gh instead of g ∗ h. We also write
g2 for gg, g3 for ggg, g−3 for (g−1)3 and so on.

Definition. A subgroup of a group (G, ∗) is a subset H of G such that ∗ is a group operation on H.

Example 12. Z is a subgroup of the group (R,+).

Example 13. The set H = {R0, R90, R180, R270} is a subgroup of D4.

Proposition 14. A subset H of a group G is a subgroup of G if and only if

1. e ∈ H (where e is the identity element of G);

2. for any x, y ∈ H, xy ∈ H; and

3. for any x ∈ H, x−1 ∈ H.

Proposition 15. A subset H of a group G is a subgroup of G if and only if H 6= ∅ and, for every x, y ∈ H,
xy−1 ∈ H.

Our goal for this section will be to prove Lagrange’s Theorem. This is the statement that if G is a finite
group and H is a subgroup of G then the number of elements of G is a multiple of the number of elements
of H .
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To prove this, we will show that we can use the subgroup H to form a partition of G. The number of
elements in each set in the partition will be the same as the number of elements in H . Thus the number
of elements in G is equal to the number of elements in H times the number of sets in the partition. And
that’s all there is to it! Of course, we have to check the details.

Definition. Let H be a subgroup of a group G, and let a ∈ G. We define the left coset of H in G
containing a, written aH, by

aH = { ah : h ∈ H }.
Lemma 16. Let H be a subgroup of G and let a, b ∈ G. If aH ∩ bH 6= ∅ then aH = bH.

Lemma 17. Let H be a subgroup of G. Put

Ω = { aH | a ∈ G }.

Then Ω is a partition of G.

Lemma 18. Let H be a subgroup of G and let a ∈ G. Then the function fa : H → aH defined by
fa(h) = ah is a bijection.

Theorem 19. Let G be a finite group and let H be a subgroup of G. Then |G| is a multiple of |H |.
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