DEPARTMENT OF MATHEMATICS

MATHS 255 Lecture outlines for week 8

Monday: Division in Z,

The cancellation laws in 7,

Recall that in Z we have two cancellation laws: a + ¢ = b+ ¢ implies a = b, and ac = bc implies a = b for
¢ # 0. The first of these laws carries over to Z,, because we can use the same argument as we did for Z:
the element @ has an additive inverse —a. However, the cancellation law for -,, does not always work. For
example, fix n = 12. Then we have 3104 =12=10,and 6 -124 =24 =0, 50 3124 =6 -12 4, but 3 # 6.

The problem is that we cannot divide both sides of_ the equation 3-194 = 6-124 by 4. What would division

mean? When might division work? What should % mean when @,b € Z,?

In Q, the fraction 7 is the unique solution x of the equation a = bz. So the problem becomes the question

of whether the equation @ = b -, T has a unique solution Z. In general, this equation could have no
solutions, a unique solution, or more than one solution.

Example 1. Consider the equation 6 = 4 -, T. Show that this equation has

e no solutions when n =8
e two solutions when n = 10

e a unique solution when n = 15.

Now, if @ = b - 7 has a solution Z, then a = bz (mod n), so a = bz + ny for some y € Z. From our
discussion of Diophantine equations, we know this happens if and only if ged(b,n) | a. In particular, if
ged(b,n) = 1, then this equation has a solution for all a. Further, the solution will be unique:

Theorem 2. Leta,b € Z, x € N. Ifb and n are relatively prime then the equation @ = b-, T has a unique
solution © € Z,,.

Corollary 3. If p is a prime number then for every b #Z 0 (mod p) the equation @ = b -p T has a unique
solution in Zi,.

Thus, division works in Z, just the same as it does in Q and R. We will return to this example, which is
an example of a field, when we discuss the axioms for the real numbers in Chapter 8.

Tuesday: Polynomials

Definition. A polynomial in = over R (or, more briefly, a polynomial) is an expression of the form
a(x) =ap+ a1z + -+ aa”

where ag, a1, ...,an € R. We may change the order of the terms, and omit the terms where a; = 0. The
numbers ag, a1, ...,a, are called the coefficients.
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The set of all such polynomials is denoted by R[z].

Definition. The degree of the term a;x* is i. The degree of the polynomial ag + a1x + - - - + anx™ is the
greatest i such that a; # 0. If there is no such i (i.e. a(x) = 0), then the degree is —oco. We denote the
degree of a(x) by dega(x).

We can also consider polynomials over other sets of numbers, such as Z[x] (polynomials with integer
coefficients), Q[z] (polynomials with rational coefficients) and so on.

We usually just think of a polynomial over R as being a function from R to R. However, we must be
careful when considering polynomials over Z,: there are infinitely many polynomials, and only finitely
many functions from Z,, to Z,, so sometimes different polynomials give the same function. For example,
we have @ —a = 0 for all a € Z,,, but the polynomials ™ — z and 0 are not equal.

Addition of polynomials

Now that we have our set R[z], we will define operations of addition and multiplication on R[z]. First,
we consider addition. To add together two polynomials, we just collect together the terms with the same
degree. In other words, we have

(ap+ a1z + -+ apx”™) + (bo + bixz + -+ bp2"™) = (a0 + bo) + (a1 + b1)z + - - - + (an + by)z™.

If the two polynomials had different degrees, we have to “padd out” the one with the lower degree with
terms 0x'. To put this another way, we have

(ao + a1z + - 4 anz™) + (bo + b1z 4 -+ + bpx™) = co + c12 + - - - + e’

where N = max(n, m), and for 0 < k < N we have ¢x = ai + bg. [In this definition, if ¢ > n then a; = 0
and if ¢ > m then b; = 0.]

Exercise 4. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree
of a(z) + b(x)?

Multiplication of polynomials

What happens when we multiply together the polynomials ag + a2 and by + bz + bo2?? If we multiply
out the brackets and collect terms together we get

(ap + a1x)(bo + bz + b2:102) = agbo + apb1z + agbex® + a1box + arbyz? + aibez®
= agbo + (apby + arbo)x + (apbe + a1b1)z? + ayboz®
In general, we have
(a0 + a1z + -+ apa™)(bo + byx + -+ + bp2™) = co + 12+ -+ + Cppma™ T,
where for 0 < k<n-+m, ¢, = Ef:o a;bi—;. [As before, we take a; = b; = 0 for any ¢ > n, j > m.]

Exercise 5. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree

of a(x)b(x)?

Multiplication in R[z] is rather like multiplication in Z. As in Z, we define a notion of “divisibility”: we
write a(x) | b(x) if there is some ¢(x) such that b(x) = a(z)c(x). Like Z, and unlike N, this relation in
not antisymmetric. In Z we have that if a | b and b | a then a = £b. In Rz], we have that if a(x) | b(z)
and b(z) | a(z) then a(x) = cb(z) for some ¢ # 0.
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Thursday: The Euclidean Algorithm in R[z]

In Z we use the Euclidean Algorithm to find greatest common divisors. What makes this possible is the
Division Algorithm.

Since we also have the Division Algorithm in R[z], we can use a similar process to find greatest common
divisors in Rz].

Example 6. Find the greatest common divisor of a(x) = 22° + 22 — 22 — 1 and b(z) = 2 — 2% + 22 — 2.
Solution. We use the Euclidean Algorithm: first divide b(z) into a(z), then divide the remainder into b(z),

then divide this new remainder into the first one, and so on. The last non-zero remainder is the greatest
common divisor.

We have
223 + 2% — 22 — 1 = 2(2® — 2% 4+ 22 — 2) + (32% — 62 + 3)
2® —2® + 22— 2= (32 + 1)(32° — 62+ 3) + (32 — 3)
32 —6x+3 = (z—1)(3z — 3)
So the last non-zero remainder is d(z) = 3z — 3. O

Theorem 7 (The Factor Theorem). Let p(z) € R[z], and let a € R. Then (x — a) | p(x) if and only
if p(a) = 0.

Proof. Suppose first that (x —a) | p(x). Then there is some ¢(x) such that p(x) = ¢(z)(x — a). But then
p(a) = q(a)(a —a) = 0.

Conversely, suppose that p(a) = 0. By the Division Algorithm in R[z], we can find polynomials ¢(x) and
r(z) with degr(z) < 1 such that p(z) = ¢(z)(x — a) + r(z). Now, since degr(z) < 1, r(x) is a constant.
Also, we have p(a) = g(a)(a — a) + r(a), in other words 0 = g(a) - 0+ r(a), so r(a) = 0. Hence r(z) =0,
so we have p(x) = ¢(z)(x — a), so (x — a) | p(z). O

Irreducible polynomials in R|z]

Definition. A polynomial p(xz) € R[z] is reducible in R[z]| if it can be factorised as p(x) = a(z)b(x),
where a(x),b(x) € Rlz] with dega(x) < degp(z) and degb(z) < degp(x). It is irreducible in Rlx] if it is
not reducible in R[z].

When we say that a polynomial is irreducible, we must specify over what field of coefficients. For example,
the polynomial 22 + 1 is irreducible in R[], but it can be factorised as (z — i)(z + i) in Clx].

Exercise 8. Show that every linear polynomial ax + b (with a # 0) is irreducible.

The irreducible polynomials in R[z] play the same role in R[z] that the primes play in Z: every polynomial
of degree greater than 0 can be written as a product of (one or more) irreducible polynomials. Moreover, as
with uniqueness of prime factorisations in Z, the factorisation of a polynomial as a product of irreducibles
is unique (up to the order of the elements, and multiplication by constants).
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Friday: Groups

Definition. Let * be a binary operation on a set A with identity element e. Let a € A. Then b is an
inverse of a ifaxb="bxa =e.

Example 9. The inverse of a real number x under the operation + is the number —z: we have x+(—x) =
(—z)+2=0.

Definition. A group is a pair (G,*) where x is a binary operation on G such that

o for any a,b,c€ G, ax* (bxc) = (a*b)*c;
o there is some e € G such that, for everya € G, axe =e*xa = a; and

e for any a € G there is some b€ G withaxb=>bxa =e.

We often abuse notation and refer to “the group G” instead of “the group (G, *)”.

Example 10. The integers form a group under addition, in other words (Z,+) is a group. The non-zero
real numbers for a group under multiplication, in other words (R\ {0},-) is a group.

Proposition 11. The inverse of a is unique. In other words, if axb=bxa=c andaxc=cx*xa=c¢e
then b = c.

Because of this uniqueness, we can denote the inverse of an element a by a~!.

Proposition 12. If (G, x) is a group and a,b,c € G with axb = a*c then b = c.

This is sometimes called the cancellation law.

Cayley tables

If % is a binary operation on a finite set, we can write down a “multiplication table” for *. For example,
we can define an operation * on the set G = {e, a, b, ¢} by the following table:

0O T O *
O TR OO0
o 0 QR
QL O O oo
R O OO0

We call this the Cayley table of the operation.
Exercise 13. Show that if * is defined by the above table then (G, *) is a group.

Proposition 14. FEach element of G occurs exactly once in each row and each column of the Cayley table
of a group operation.

Proposition 15. Let (G, *) be a group with identity element e.

1. If x € G satisfies ¢ *x = x, then x = e.

2. If x,y € G satisfy xxy =y, then x = e. [Put another way, if xxy =y for some y € G then xxy =y
for every y € G.]
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Exercise 16. Given that & is a group operation on the set G = {p,q,r, s}, complete the following Cayley
table:

&) | p q T S

p|r

q
r
s
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