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MATHS 255 Lecture outlines for week 5

Monday: Functions as relations, one to one and onto functions

What is a function? [5.1]

Informally, a function from A to B is a rule which assigns to each element a of A a unique element f(a)
of B. Officially, we have

Definition. A function f from A to B is a subset of A×B such that

• for each a ∈ A there is a b ∈ B with (a, b) ∈ f .

• if (a, b) ∈ f and (a, c) ∈ f then b = c.

We write f : A → B to show that f is a function from A to B. If a ∈ A, we write f(a) for the unique
b ∈ B such that (a, b) ∈ f .

Thus if f is a function, we have f(a) = b ⇐⇒ (a, b) ∈ f . We will use this equivalence later.

Definition. If f : A → B, the A is the domain of f and B is the codomain of f . We write Dom(f) for
A and Codom(f) for B. We also define the range of f , Ran(f), by

Ran(f) = { b ∈ B : (∃a ∈ A)(f(a) = b) }.
Note that Ran(f) ⊆ Codom(f), but there are examples where the two sets are not the same.

Definition (Equality of functions). Two functions f : A → B and g : A′ → B′ are equal iff they
are the same set of ordered pairs, in other words iff A = A′ and f(a) = g(a) for all a ∈ A. [Notice that
the textbook also requires that B = B′: most authors would consider that f and g are equal even if the
codomains differ, as long as the domain and values are the same.]

One-to-one and onto [5.1]

Definition. A function f : A → B is one-to-one if for each b ∈ B there is at most one a ∈ A with
f(a) = b. It is onto if for each b ∈ B there is at least one a ∈ A with f(a) = b. It is a one-to-one
correspondence or bijection if it is both one-to-one and onto.

Notice that “f is one-to-one” is asserting uniqueness, while “f is onto” is asserting existence. This gives
us the idea of how to prove that functions are one-to-one and how to prove they are onto.

Example 1. Show that the function f : R → R given by f(x) = 2x + 1 is one-to-one and onto.

Example 2. Show that the function f : Z → Z given by f(n) = 2n + 1 is one-to-one but not onto.

For functions from R to R, we can use the “horizontal line test” to see if a function is one-to-one and/or
onto. The horizontal line y = b crosses the graph of y = f(x) at precisely the points where f(x) = b. So
f is one-to-one if no horizontal line crosses the graph more than once, and onto if every horizontal line
crosses the graph at least once.
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Example 3. Sketch graphs of the following functions f : R → R and determine whether each is one-to-one
and/or onto.

1. f(x) = x3 + x.

2. f(x) = x3 − x.

3. f(x) = ex.

4. f(x) = x2.

Notice that in the definition of “onto”, we need to know what the codomain is. So the function f =
{ (x, ex) : x ∈ R } is not onto when thought of as a function from R to R, but it is onto when thought of
as a function from R to (0,∞).

Proposition 4. Let f : A → B be a function. Then f is an onto function from A to Ran(f). If f is
one-to-one, then f is a bijection from A to Ran(f).

Tuesday: Composition of functions, Inverses

Composition of functions [5.2]

Definition. Let f : A → B and g : B → C. We define a new function g ◦ f : A → C by declaring that
(g ◦ f)(a) = g(f(a)). We call g ◦ f “g composed with f”.

Example 5. Let f, g : R → R be given by f(x) = x2 + 2 and g(x) = 3x. Find g ◦ f and f ◦ g.

The above example shows that f ◦ g and g ◦ f need not be equal. Of course, if A and C are not the same,
they will not even be defined: if g(b) /∈ A then trying to figure out what f(g(b)) is gives a type error. [For
example, “my mother’s telephone number” makes sense but “my telephone number’s mother” does not.

Composition of functions interacts with the notions of one-to-one and onto: it does preserve these prop-
erties, and in some cases if the composition has the property then so must the original functions.

Theorem 6. Let f : A → B and g : B → C be functions.

1. If f and g are both one-to-one then g ◦ f is one-to-one.

2. If f and g are both onto then g ◦ f is onto.

3. If g ◦ f is one-to-one then f is one-to-one.

4. If g ◦ f is onto then g is onto.

However there are examples of f and g with g ◦ f both one-to-one and onto but g not one-to-one and f
not onto.

Although ◦ is not commutative, it is associative.

Theorem 7. Let f : A → B, g : B → C and h : C → D are functions then (h ◦ (g ◦ f)) = ((h ◦ g) ◦ f).

Proof. See pp 110 and 111 of the textbook, Problem 5.2.6..
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Definition. Let A be a set. The identity function on A, 1A, is the function 1A : A → A given by f(a) = a
for all a ∈ A. In other words, 1A = { (a, a) : a ∈ A }.
Proposition 8. Let f : A → B be a function. Then 1B ◦ f = f = f ◦ 1A.

Thursday: Inverses, images and preimages

Inverses [5.2]

Definition. Let f : A → B be a function. An inverse of f is a function g : B → A such that f ◦ g = 1B

and g ◦ f = 1A.

Example 9. Let f, g : R → R be given by f(x) = 2x + 1 and g(x) = 1
2x− 1

2 . Then g is an inverse of f .

Example 10. Let f : R → [0,∞) and g : [0,∞) → R be given by f(x) = x2 and g(x) =
√

x. Then g
is not an inverse of f . Although we have f(g(x)) = (

√
x)2 = x, so f ◦ g = 1[0,∞), when we consider

g(f(x)) =
√

x2, we always get the positive square root, so for example g(f(−2)) =
√

(−2)2 =
√

4 = 2.

Lemma 11. Let f : A → B. Suppose g is an inverse of f . Then g = { (f(a), a) : a ∈ A }.

Proof. We must prove two inclusions: g ⊆ { (f(a), a) : a ∈ A } and { (f(a), a) : a ∈ A } ⊆ g.

Let p ∈ g. Then p = (b, g(b)) for some b ∈ B. Now f(g(b)) = b, so we have p = (f(g(b)), g(b)), i.e.
p = (f(a), a) where a = g(b). So p ∈ { (f(a), a) : a ∈ A } as required.

Conversely, let a ∈ A: we will show that (f(a), a) ∈ g. Now, we know that g(f(a)) = a. Since g(y) =
z ⇐⇒ (y, z) ∈ g, this means that (f(a), a) ∈ g, as required.

Lemma 12. Let f : A → B be a function. If f has an inverse, it is unique.

Proof. Use Proposition 8 and Theorem 7.

If f has an inverse, we write it as f−1.

Theorem 13. Let f : A → B be a function. Then f has an inverse if and only if f is a bijection.

Proof. Suppose first that f has an inverse. We must show that f is one-to-one and onto.

One-to-one: Let x, y ∈ A with f(x) = f(y). Then f−1(f(x)) = f−1(f(y)), i.e. x = y, as required.

Onto: Let b ∈ B. Then f(f−1(b)) = b, i.e. there is at least one a ∈ A (namely a = f−1(b)) such that
f(a) = b.

Conversely, suppose that f is a bijection. We must find a candidate function g such that g is an inverse
of f . From the earlier lemma, there is only one possible choice: we must have g = { (f(a), a) : a ∈ A }.
So we must check that this is indeed an inverse of f : we must show it is a function, that f ◦ g = 1B and
that g ◦ f = 1A.
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Function: Let b ∈ B. On the one hand, since f is onto, there is at least one a ∈ A with f(a) = b, so
there is at least one a ∈ A with (f(a), a) = (b, a), so there is at least one a ∈ A with (b, a) ∈ g. On
the other hand, since f is one-to-one, there is at most one a ∈ A with f(a) = b, so there is at most
one a ∈ A with (b, a) ∈ g. So g is indeed a function.

f ◦ g = 1B: Let b ∈ B. Put a = g(b). So (b, a) ∈ g, so (b, a) = (f(c), c) for some c ∈ A. We must have
c = a, so b = f(a), i.e. b = f(g(b)), as required.

g ◦ f = 1A: Let a ∈ A. Then (f(a), a) ∈ g, so g(f(a)) = a, as required.

Images and preimages [5.3]

Definition. Let f : A → B be a function. For S ⊆ B we define the inverse image or preimage of S under
f to be

f−1(S) = { a ∈ A : f(a) ∈ S }.

Notice that f−1(S) is a subset of A, not an element of A. It is defined whether or not f−1 exists as
a function. Note that there is a slight ambiguity here: if f happens to be a bijection then f−1(b) is an
element of A for b ∈ B and f−1(S) is a subset of A for S ⊆ B. Since the elements of B are not (usually)
subsets of B, this ambiguity should never cause a problem.

Example 14. Let f : R → R be given by f(x) = x2. Find the following sets:

1. f−1({4}).
2. f−1([−2, 9]).

3. f−1((1, 4]).

4. f−1({−9}).

To prove facts about preimages, we use the equivalence that

x ∈ f−1(S) ⇐⇒ f(x) ∈ S.

Example 15. Let f : A → B be a function, S, T ⊆ B. Then

1. f−1(S ∪ T ) = f−1(S) ∪ f−1(T ).

2. f−1(S ∩ T ) = f−1(S) ∩ f−1(T ).

3. f−1(SC
B) = f−1(S)C

A.

In the same way as the preimage, we define the image of a subset of A:

Definition. Let f : A → B be a function and S ⊆ A. We define the image of S under f to be

f(S) = { f(a) : a ∈ S }.

Example 16. Let f : A → B be a function, S, T ⊆ B. Then
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1. f(S ∪ T ) = f(S) ∪ f(T ).

2. f(S ∩ T ) ⊆ f(S) ∩ f−1(T ).

Notice that in the second of these, we only get ⊆ rather than =: we can find examples with f(S ∩ T ) ⊂
f(S) ∩ f(T ).

Friday: Orders and functions

Definition. Let (A,�A) and (B,�B) be sets. A function f : A → B is order-preserving if for all x, y ∈ A,

x �A y =⇒ f(x) �B f(y).

It is strictly order preserving if for all x, y ∈ A,

x �A y ⇐⇒ f(x) �B f(y).

For example, a constant function (in other words a function f such that there is some b ∈ B with f(x) = b
for all x ∈ A) is order preserving, but is not strictly order preserving unless A is empty or has only one
element.

Proposition 17. If (A,�A) and (B,�B) are posets and f : A → B is strictly order preserving then f is
one-to-one.

Definition. Let (A,�A) and (B,�B) be posets. An order-isomorphism from A to B is a bijection f :
A → B such that f and f−1 are both order-preserving. If there exists such an isomorphism, we say that
A and B are order-isomorphic.

Example 18. Let A = {n ∈ N : n | 30 } and B = P({2, 3, 5}). Define f : A → B by f(n) = {m ∈
{2, 3, 5} | m | n }. Then f is an order-isomorphism from (A, |) to (B,⊆).

Example 19. Show that (Z,≤) is order-isomorphic to (E,≤), where E is the set of even integers.

Theorem 20. Let (A,�A) and (B,�B) be posets and f : A → B a bijection. Then f is an order-
isomorphism iff f is strictly order preserving.

Theorem 21. Let A and B be posets and f : A → B an order-isomorphism. Then x ∈ A is maximal in
A iff f(x) is maximal in B.

Example 22. Let A = { 1− 1
n : n ∈ N}, and B = A ∪ {1}, with the usual order they get as subsets of R.

Then N is order isomorphic to A but N is not order-isomorphic to B.
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