- **1.** (a) (5 marks) If $n \not| a$ and $n \not| b$, then $n \not| ab$.
 - (b) (10 marks) True, for example, A(1) is true.
 - (c) (10 marks) False. For example, if a = 2 and b = 2, then A(4) is false.
- **2.** (25 marks) After relabeling, we may suppose $m_1 \leq m_2 \leq \ldots \leq m_n$. For $n \in \mathbb{N} \cup \{0\}$, let P_n be the statement that W(n) is well-ordered.

Base: P_0 is the statement that $W(0) = \mathbb{N}$ is well-ordered, which is true as shown in the class.

Inductive step: Suppose $k \in \mathbb{N} \cup \{0\}$ and P_k is true, that is, W(k) is well-ordered. Then $W(k + 1) = \{-m_{k+1}\} \cup W(k)$. Let K be a non-empty subset of W(k + 1).

If $-m_{k+1} \in K$, then $-m_{k+1}$ is its least element.

If $-m_{k+1} \notin K$, then $K \subseteq W(k)$ and by induction assumption, K also has a least element. It follows that P_{k+1} is true.

Hence, by induction, P_n is true for all $n \in \mathbb{N} \cup \{0\}$.

3. (25 marks) Reflexive: a ~ a because |a| = |a|.
Symmetric: a ~ b ⇔ |a| = |b| ⇔ |b| = |a| ⇔ b ~ a.
Transitive: (a ~ b) ∧ (b ~ c) ⇔ (|a| = |b|) ∧ (|b| = |c|), so |a| = |c| ⇔ a ~ c.
It follows that ~ is an equivlence relation on Z.
Let x ∈ Z. Then x ∈ [2], if and only if |x| = |2| = 2, so that x = 2 or -2. Thus

 $[2] = \{2, -2\}.$

4. (25 marks) Suppose h is onto and $A, B \in \mathcal{P}(Y)$. If $A \subseteq B$ and $x \in h^{-1}(A)$, then $y = h(x) \in A$ and $y \in B$ as $A \subseteq B$. Thus $x \in h^{-1}(B)$ and $h^{-1}(A) \subseteq h^{-1}(B)$. We have shown that if $A \subseteq B$, then $h^{-1}(A) \subseteq h^{-1}(B)$.

Conversely, suppose $h^{-1}(A) \subseteq h^{-1}(B)$ and $y \in A$. Since h is onto, y = h(x) for some $x \in X$. In particular, $x \in h^{-1}(A)$ and so $x \in h^{-1}(B)$. Thus $h(x) \in B$ and hence $y = h(x) \in B$. We have shown that if $h^{-1}(A) \subseteq h^{-1}(B)$, then $A \subseteq B$.

Therefore $A \subseteq B \iff h^{-1}(A) \subseteq h^{-1}(B)$ and $h^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ is order preserving.