- (a) (5 marks) Since S is bounded, there are real numbers a, b such that for any x ∈ S, a ≤ x ≤ b. Now T is a subset of S, each element y of T is also an element of S, so that a ≤ y ≤ b and T is bounded below by a and above by b.
 - (b) (4 marks) Since T and S are bounded below and above, it follows that glb S, glb T, lub S and lub T exist.

(8 marks) Let L_X and U_X be the set of lower bounds and upper bounds of a set X. As shown in (a) above, $L_S \subseteq L_T$ and $U_S \subseteq U_T$. By definition, glb S is the greatest element of L_S , in particular, glb $S \in L_S$ and so glb $S \in L_T$. But glb T is the greatest element of L_T , so glb $S \leq$ glb T. Similarly, lub $S \in U_T$ and lub T is the least element of U_T , so lub $T \leq$ lub S. For any $y \in T$, glb $T \leq y \leq$ lub T. It follows that

- glb $S \leq$ glb Tlub $T \leq$ lub S.
- **2.** (10 marks) Suppose c is a least element of S, where S = (a, b). Then $c \in S$ and so a < c < b. If $z = \frac{c+a}{2}$, then

$$a = (\frac{a}{2} + \frac{a}{2}) < z = \frac{c+a}{2} < (\frac{b}{2} + \frac{b}{2}) = b,$$

so that $z \in S$. But $z < \frac{c+c}{2} = c$, so c is not a least element of S, which is impossible.

3. (a) (**10 marks**)

$$a_{n+1} - a_n = \frac{3}{1+5^{-n-1}} - \frac{3}{1+5^{-n}}$$

= $\frac{3((1+5^{-n}-(1+5^{-n-1})))}{(1+5^{-n}-1)(1+5^{-n})}$
= $\frac{3(5^{-n}-5^{-n-1})}{(1+5^{-n-1})(1+5^{-n})}$
= $\frac{3\cdot5^{-n-1}(5-1)}{(1+5^{-n-1})(1+5^{-n})}$
= $\frac{12\cdot5^{-n-1}}{(1+5^{-n-1})(1+5^{-n})}$
> 0.

Thus $\{a_n\}$ is increasing. Since $a_1 = \frac{3}{1+5^{-1}} \le a_n < 3$, it follows that $\{a_n\}$ is bounded. (b) (5 marks) glb $\{a_n\} = a_1 = \frac{5}{2}$ and lub $\{a_n\} = 3$. In addition, $\frac{5}{2} = a_1 \in \{a_n\}$ and $3 \notin \{a_n\}$. (c) (8 marks) For any $\epsilon > 0$, there is an natural number N such that $N > \frac{3}{\epsilon} - 1$. If $n \ge N$, then

$$\left|\frac{3}{1+5^{-n}}-3\right| = 3\left|\frac{1}{1+5^{-n}}-1\right|$$
$$= 3\frac{5^{-n}}{1+5^{-n}}$$
$$= \frac{3}{5^{n}+1}$$
$$< \frac{3}{1+2^{n}}$$
$$< \frac{3}{1+n}$$
$$\leq \frac{3}{1+N}$$
$$\leq \frac{3}{1+(\frac{3}{\epsilon}-1)}$$
$$= \epsilon.$$

By definition, $\lim_{n\to\infty} a_n = 3$.