Maths 255 ${\rm SC}$

Solutions to Assignment 8

1. (a) (5 marks) A Cayleyb table of $(U(5), \cdot_5)$ is

	1	2	3	4
1	1	2	3	4
2	$\frac{1}{2}$	4	1	3
3	3	1	4	2
4	4	3	2	1

(b) (4 marks) Define $\varphi : U(5) \to \mathbb{Z}_4$ by $\varphi(1) = 0$, $\varphi(2) = 1$, $\varphi(3) = 3$ and $\varphi(4) = 2$. (4 marks) Then the image of the Cayley table of U(5) is

	0		3	2
0	0	1	3	2
1	1	2	0	3
3	3	0	2	1
2	0 1 3 2	3	1	0

(3 marks) which is a Cayley table of $(\mathbb{Z}_4, +_4)$. It follows that $\varphi(x \cdot_5 y) = \varphi(x) +_4 \varphi(y)$ for $x, y \in U(5)$. (2 marks) Since φ is also a bijection, φ is an isomorphism and so $(U(5), \cdot_5) \simeq (\mathbb{Z}_4, +_4)$.

2. (3 marks) Since
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in H$$
, it follows that $H \neq \emptyset$.
(7 marks) If $A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$ are elements of H , then
 $A - B = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} - \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} = \begin{pmatrix} 0 & (a - b) \\ -(a - b) & 0 \end{pmatrix}$.

Since $a, b \in \mathbb{R}$, it follows that $a - b \in \mathbb{R}$ and so $A - B \in H$. By One-Step-Test, H is a subgroup of $Mat_2(\mathbb{R})$.

- **3.** (a) (6 marks) Since $1^{-1} = 1 \in K$ and $6^{-1} = 6 \in K$, it follows that $K \neq \emptyset$ and $x^{-1} \in K$ for each $x \in K$. Similarly, $1 \cdot_7 1 = 6 \cdot_7 6 = 1 \in K$ and $1 \cdot_7 6 = 6 \in K$, which implies that $x \cdot_7 y \in K$ for any $x, y \in K$. By Two-Step-Test, K is a subgroup of U(7).
 - (b) (8 marks) For a group (G, *), let $X_G = \{x \in G : x * x = e_G\}$. Then by Proposition 1.27, if $H \simeq G$ as groups, then the number of elements of X_G and X_H are the same. Since $X_{U(7)} = \{1, 6\}$ and since $X_{D_3} = \{R_0, V, V', V''\}$, it follows that U(7) is not isomorphic to D_3 .
 - (c) (8 marks) The left cosets of K in U(7) are $K = \{1, 6\}$ $2K = \{2, 5\}$ and $3K = \{3, 4\}.$