1. (a) (2 marks) If $a, b \in \mathbb{R}^*$, then $a \neq 0$ and $b \neq 0$, so $a/b \neq 0$ and $a/b \in \mathbb{R}^*$. Thus / is a binary operation.

Solutions to Assignment 7

- (b) (4 marks) Suppose $e \in \mathbb{R}^*$ is the identity. Then a/e = a for each $a \in \mathbb{R}^*$, so that e = 1. But $e/a = 1/a \neq a$ in general. For example, when a = 2, $1/2 \neq 2$. It follows that $(\mathbb{R}^*, /)$ has no identity.
- (c) (4 marks) For $a, b, c \in \mathbb{R}^*$, (a/b)/c = a/(bc) and a/(b/c) = (ac)/b. But $a/(bc) \neq (ac)/b$ in general, for example, when a = 1, b = c = 2, a/(bc) = 1/4 and (ac)/b = 2/2 = 1. Thus / is not associative.
- 2. (i) (3 marks) Let $a, b \in \mathbb{R}^+$. Then a > 0 and b > 0, so that ab > 0 and hence $ab \in \mathbb{R}^+$. Thus the multiplication is a binary operation.
 - (ii) (2 marks) 1 is the identity, since 1a = a1 = a for any $a \in \mathbb{R}^+$.
 - (iii) (3 marks) For $a \in \mathbb{R}^+$, a > 0 and so 1/a > 0. Thus $1/a \in \mathbb{R}^+$ and 1/a is the inverse of a, since a(1/a) = (1/a)a = 1.
 - (iv) (2 marks) The associativity a(bc) = (ab)c holds for all real numbers a, b, c, so it also holds for $a, b, c \in \mathbb{R}^+$.

It follows that $R^+ = (0, \infty)$ is a group under multiplication.

3. (a) (**8 marks**) Suppose

 R_0 is the rotation of 0° ,

 R_{90} is the rotation of 180° ,

H is the rotation of 180° about horizontal axis and

V is the rotation of 180° about vertical axis.

Then $S(X) = \{R_0, R_{180}, H, V\}.$

(b) (7 marks)

0	R_0	R_{180}	H	V
R_0	R_0	R_{180}	H	V
R_{180}	R_{180}	R_0	V	H
H	H	V	R_0	R_{180}
V	V	H	R_{180}	R_0

(c) (3 marks) $R_0^{-1} = R_0, R_{180}^{-1} = R_{180}, H^{-1} = H$ and $V^{-1} = V$.

4. (a) (9 marks)

*	R_0	R_{120}	R_{240}	V	V'	V''
R_0	R_0	R_{120}	R_{240}	V	V'	V''
R_{120}	R_{120}	R_{240}	R_0	V'	V''	V
R_{240}	R_{240}	R_0	R_{120}	V''	V	V'
V	V	V''	V'	R_0	R_{240}	R_{120}
V'	V'	V	V''	R_{120}	R_0	R_{240}
V''	$\begin{array}{c} -3 \\ R_0 \\ R_{120} \\ R_{240} \\ V \\ V' \\ V'' \\ V'' \end{array}$	V'	V	R_{240}	R_{120}	R_0

(b) (3 marks)
$$R_{120} * V = V' \neq V'' = V * R_{120}$$
.