- Due: 25 September 2002
- 1. (a) (4 marks) Suppose φ is one-to-one. Then $\varphi(\bar{x}) \neq \varphi(\bar{y})$ for distinct $\bar{x}, \bar{y} \in \mathbb{Z}_n$, so that the image $\varphi(\mathbb{Z}_n)$ contains n elements. But $\varphi(\mathbb{Z}_n)$ is a subset of \mathbb{Z}_n and \mathbb{Z}_n has n elements, so $\varphi(\mathbb{Z}_n) = \mathbb{Z}_n$ and φ is onto.
 - (b) (4 marks) Suppose φ is onto. If φ is not one-to-one, then $\varphi(\bar{x}) = \varphi(\bar{y})$ for some $\bar{x} \neq \bar{y}$, so that the number of elements in $\varphi(\mathbb{Z}_n)$ is less than n and φ is not onto. This contradiction implies that φ is one-to-one.
 - (c) (7 marks) Suppose gcd(a, n) = 1. Then \bar{a} is invertible in \mathbb{Z}_n , that is, there is some $\bar{b} \in \mathbb{Z}_n$ such that $\bar{a} \cdot_n \bar{b} = \bar{1}$.

Suppose $\psi(\bar{c}) = \psi(\bar{d})$ for some $\bar{c}, \bar{d} \in \mathbb{Z}_n$. Then $\bar{a} \cdot_n \bar{c} = \bar{a} \cdot_n \bar{d}$, so $\bar{b} \cdot_n \bar{a} \cdot_n \bar{c} = \bar{b} \cdot_n \bar{a} \cdot_n \bar{d}$, that is, $\bar{1} \cdot_n \bar{c} = \bar{1} \cdot_n \bar{d}$ and $\bar{c} = \bar{d}$, it follows that ψ is one-to-one and by (a) above it is onto.

2. (3 marks) For $n \in \mathbb{N}$, $7 \mid 3^{4n+1} + 4^{n+1} \iff 3^{4n+1} + 4^{n+1} \equiv 0 \pmod{7}$. Now (7 marks)

$$3^{4n+1} + 4^{n+1} \equiv (3^4)^n \cdot 3 + 4^n \cdot 4$$

$$\equiv ((9)^2)^n \cdot 3 + 4^n \cdot 4$$

$$\equiv (2^2)^n \cdot 3 + 4^n \cdot 4$$

$$\equiv 4^n \cdot 3 + 4^n \cdot 4$$

$$\equiv 4^n \cdot 7$$

$$\equiv 0 \pmod{7},$$

so $7 \mid 3^{4n+1} + 4^{n+1}$.

3. (a) (6 marks) $4x^2 - x + 2 \equiv 0 \pmod{5} \iff 4\bar{x}^2 - \bar{x} + \bar{2} = \bar{0} \text{ in } \mathbb{Z}_5$. Now $\bar{x} = \bar{0} \implies 4\bar{x}^2 - \bar{x} + \bar{2} = \bar{2}$ $\bar{x} = \bar{1} \implies 4\bar{x}^2 - \bar{x} + \bar{2} = \bar{0}$ $\bar{x} = \bar{2} \implies 4\bar{x}^2 - \bar{x} + \bar{2} = \bar{3}$ $\bar{x} = \bar{3} \implies 4\bar{x}^2 - \bar{x} + \bar{2} = \bar{0}$ $\bar{x} = \bar{3} \implies 4\bar{x}^2 - \bar{x} + \bar{2} = \bar{0}$ $\bar{x} = \bar{4} \implies 4\bar{x}^2 - \bar{x} + \bar{2} = \bar{2}$.

Thus $\bar{x} = \bar{1}$ and $\bar{3}$ are the solutions in \mathbb{Z}_5 , and so (2 marks) $x \in \bar{1} \cup \bar{3}$ are solutions, that is, $x \in \{5k+1, 5k+3 : k \in \mathbb{Z}\}.$

(b) (3 marks) $25x \equiv 10 \pmod{30} \iff 25x + 30y = 10 \text{ for some } y \in \mathbb{Z} \iff 5x + 6y = 2 \text{ for some } y \in \mathbb{Z} \iff 5x \equiv 2 \pmod{6}. \iff \bar{5} \cdot_6 \bar{x} = \bar{2} \text{ in } \mathbb{Z}_6.$ (4 marks) Now

Thus $5x \equiv 2 \pmod{6}$. $\iff \bar{x} = \bar{4} \iff x \in \bar{4}$, that is, $x \in \{6k + 4 : k \in \mathbb{Z}\}$.

4. (a) (**5 marks**) Note

Thus $3^{-1} = 2$ in \mathbb{Z}_5 , and $f(x) = (3x^2 + 2)(2x^3 + 2x + 4) + (2x + 1)$. So $q(x) = 2x^3 + 2x + 4$, r(x) = 2x + 1.

(b) **(5 marks**)

$$f(x) = g(x)(x-2) + (x^2 + 2)$$

$$g(x) = (x^2 + 2)(x^2 + 2x + 2) + 0.$$

Thus $(x^2 + 2)$ is a greatest common divisor.