1. (4 marks) For $n \in \mathbb{N}$ let P_n be the statement that $1 \cdot 2 + 2 \cdot 3 + \dots n(n+1) = \frac{1}{3}n(n+1)(n+2)$.

Base: (3 marks) P_1 is the statement that $1 \cdot 2 = \frac{1 \cdot 2 \cdot 3}{3}$, which is true because $\frac{1 \cdot 2 \cdot 3}{3} = 2 = 1 \cdot 2$. Inductive step: (6 marks) Suppose $k \in \mathbb{N}$ and P_k is true, that is,

$$1 \cdot 2 + 2 \cdot 3 + \dots + k(k+1) = \frac{1}{3}k(k+1)(k+2).$$

Then

$$1 \cdot 2 + 2 \cdot 3 + \dots k(k+1) + (k+1)(k+2) = [1 \cdot 2 + 2 \cdot 3 + \dots k(k+1)] + (k+1)(k+2)$$

$$= \frac{1}{3}k(k+1)(k+2) + (k+1)(k+2)$$

$$= (k+1)(k+2)(\frac{1}{3}k+1)$$

$$= \frac{1}{3}(k+1)(k+2)(k+3),$$

so $1 \cdot 2 + 2 \cdot 3 + \ldots k(k+1) + (k+1)(k+2) = \frac{1}{3}(k+1)(k+2)(k+3)$, in other words P_{k+1} is true.

- (2 marks) Hence, by induction, P_n is true for all $n \in \mathbb{N}$.
- **2.** (3 marks) For $n \in \mathbb{N}$ let P_n be the statement that W(n) is well-ordered.
 - **Base:** (2 marks) P_1 is the statement that $W(1) = \mathbb{N} \cup \{0\}$ is well-ordered, which is true as shown in the class.
 - **Inductive step:** (4 marks) Suppose $k \in \mathbb{N}$ and P_k is true, that is, W(k) is well-ordered. Then $W(k+1) = \{-k\} \cup W(k)$. Let K be a subset of W(k+1) with $K \neq \emptyset$. If $-k \in K$, then -k is its least element. If $-k \notin K$, then $K \subseteq W(k)$ and by induction assumption, K also has a least element. It follows that P_{k+1} is true.
 - (1 mark) Hence, by induction, P_n is true for all $n \in \mathbb{N}$.
- **3.** (3 marks) For $n \in \mathbb{N}$ let P_n be the statement that $7 \mid 3^{4n+1} + 4^{n+1}$.

Base: (2 marks) P_1 is the statement that $7 \mid 3^5 + 4^2$, which is true because $3^5 + 4^2 = 259 = 7 \cdot 37$.

Inductive step: (8 marks) Suppose $k \in \mathbb{N}$ and P_k is true, in other words there is some $x \in \mathbb{Z}$ such that $3^{4k+1} + 4^{k+1} = 7x$, so $3^{4k+1} = 7x - 4^{k+1}$. Then

$$\begin{aligned} 3^{4(k+1)+1} + 4^{(k+1)+1} &= 3^{4k+1+4} + 4^{k+1+1} \\ &= 3^{4k+1} \cdot 3^4 + 4^{k+1} \cdot 3 \\ &= (7x - 4^{k+1})3^4 + 4 \cdot 4^{k+1} \\ &= 81 \cdot 7x - 81 \cdot 4^{k+1} + 4 \cdot 4^{k+1} \\ &= 81 \cdot 7x - 77 \cdot 4^{k+1} \\ &= 7(81x - 11 \cdot 4^{k+1}), \end{aligned}$$

so 7 | $3^{4(k+1)+1} + 4^{(k+1)+1}$, in other words P_{k+1} is true.

(2 marks) Hence, by induction, P_n is true for all $n \in \mathbb{N}$.

4. (7 marks) Euclidean Algorithm gives the following results:

3598	1	0	
1603	0	1	
392	1	-2	$r_2 - 2r_1$
35	-4	9	$r_2 - 4r_3$
7	45	-101	$r_3 - 11r_4$
0	-229	514	$r_4 - 5r_5$

(3 marks) Thus gcd(3598, 1603) = 7 and $7 = 45 \times 3598 + (-101) \times 1603$.