1. (5 marks each)

- (a) Note that $\rho = \{(x, y) \in A \times A : xy = 0\} = \emptyset$ since both x and y are positive. So ρ is symmetric, antisymmetric and transitive. But ρ is not reflexive because $(1, 1) \notin \rho$.
- (b) Note $\rho = \{(0, 4), (4, 0), (1, 3), (3, 1), (2, 2)\}$. So ρ is **not reflexive** because $(0, 0) \notin \rho$. **Symmetric**: $(x, y) \in \rho \iff x + y = 4 \iff y + x = 4 \iff (y, x) \in \rho$; **Not antisymmetric**: $0\rho 4 \wedge 4\rho 0$ but $4 \neq 0$. **Not transitive**: $0\rho 4 \wedge 4\rho 0$ but $(0, 0) \notin \rho$.
- (c) Not reflexive: $(4, 4) \notin \rho$. Not symmetric: $(2, 1) \in \rho$ but $(1, 2) \notin \rho$. Not antisymmetric: $2\rho 4 \wedge 4\rho 2$ but $4 \neq 2$. Not Transitive: $4\rho 2 \wedge 2\rho 1$ but $(4, 1) \notin \rho$.
- (d) **Reflexive**: for all $x \in D$, $x x = 0 \in \mathbb{Z}$. **Symmetric**: $(x, y) \in \rho \iff x - y \in \mathbb{Z} \iff y - x = -(x - y) \in \mathbb{Z} \iff (y, x) \in \rho$. **Not antisymmetric**: $1\rho 2 \wedge 2\rho 1$ but $1 \neq 2$. **Transitive**: $x\rho y \wedge y\rho z \iff x - y \in \mathbb{Z}$ and $y - z \in \mathbb{Z}$, so $x - z = (x - y) + (y - z) \in \mathbb{Z}$ and $x\rho y$.
- **2.** (a) (8 marks)

Reflexive: $x \in S \implies (x, x) \in \rho$ and so $x \rho x$.

Symmetric: $(x, y) \in \rho \implies (y, x) \in \rho$.

Transitive: Suppose $(x, y) \in \rho \land (y, z) \in \rho$. We may suppose $x \neq y, x \neq z$ and $y \neq z$. Check the transitivity when x = 1, 2, 3, 4, 5, respectively.

Equivalence classes: $[1] = \{1, 2, 3, \}, [4] = \{4, 5\}$ and $[6] = \{6\}$. Let $S_1 = [1], S_2 = [4]$ and $S_3 = [6]$, Then $S = S_1 \cup S_2 \cup S_3$ and $S_i \cap S_j = \emptyset$ whenever $i \neq j$.

(b) (7 marks) Since $S = S_1 \cup S_2 \cup S_3$ and $S_i \cap S_j = \emptyset$ whenever $i \neq j$, it follows that $\{S_1, S_2, S_3\}$ is a partition of S. Let

 $\rho = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,4), (4,2), (2,6), (6,2), (4,6), (6,4), (3,5), (5,3)\}.$

Then ρ is an equivalence relation and $S_1 = [1], S_2 = [2]$ and $S_3 = [3]$.

3. (a) (6 marks)

Reflexive: Since x - x = 4 * 0 and $0 \in \mathbb{Z}$, it follows that $x \sim x$.

Symmetric: If $x \sim y$ then x - y = 4b for some $b \in \mathbb{Z}$, so y - x = 4(-b) and $-b \in \mathbb{Z}$. Thus $y \sim x$.

Transitive: Suppose $x \sim y$ and $y \sim z$. Then x - y = 4b and y - z = 4t for some $b, t \in \mathbb{Z}$, so x - z = (x - y) + (y - z) = 4(b + t) and $b + t \in Z$. Thus $x \sim z$.

(b) (9 marks) For $x \in \mathbb{Z}$, $[x] = \{y \in \mathbb{Z} : x - y = 4b \text{ for } b \in \mathbb{Z}\}$, so

$$[x] = \{ y \in \mathbb{Z} : y = 4b + x \text{ for } b \in \mathbb{Z} \}.$$

If x = 4q + r with $t \in \mathbb{Z}$ and $0 \le r \le 3$, then y = 4b + x = 4(q + b) + r and since b is arbitrary, q + b is also arbitrary and

$$[x] = \{y \in \mathbb{Z} : y - r = 4t \text{ for } t \in \mathbb{Z}\} = [r].$$

It follows that [0], [1], [2] and [3] are all equivalent classes. Since $i \notin [r]$ for i with $0 \le i \le 3$ and $i \ne r$, it follows that [0], [1], [2] and [3] are all distinct equivalent classes.