	Department of Mathematics	
Maths 255 SC	Solutions to Assignment 2	Due: 7 August 2002

1. (a) (5 marks) Suppose $x \in C \setminus (A \cap B)$. Then $x \in C$ and $x \notin A \cap B$. Thus either $x \notin A$ or $x \notin B$. If $x \notin A$ then $x \in C \setminus A$, so $x \in (C \setminus A) \cup (C \setminus B)$. If $x \notin B$ then $x \in C \setminus B$, so $x \in (C \setminus A) \cup (C \setminus B)$. Since x is arbitrary, it follows that

$$C \setminus (A \cap B) \subseteq (C \setminus A) \cup (C \setminus B).$$

(5 marks) Conversely, suppose $x \in (C \setminus A) \cup (C \setminus B)$. Then $x \in C \setminus A$ or $x \in C \setminus B$. If $x \in C \setminus A$ then $x \notin A$. If $x \in C \setminus B$ then $x \notin B$. In both cases $x \notin A \cap B$, so $x \in C \setminus (A \cap B)$ and since x is arbitrary, it follows that

$$(C \setminus A) \cup (C \setminus B) \subseteq C \setminus (A \cap B).$$

Hence $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$.

(b) (3 marks) Since $A \setminus B \subseteq A$, $B \setminus A \subseteq B$ and $A \cap B \subseteq A$, it follows that

$$(A \setminus B) \cup (B \setminus A) \cup (A \cap B) \subseteq A \cup B.$$

(3 marks) Let $x \in A \cup B$, so that $x \in A$ or $x \in B$. Suppose moreover, $x \in A$. If $x \in B$, then $x \in A \cap B$. If $x \notin B$, then $x \in A \setminus B$, so

$$x \in (A \setminus B) \cup (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A) \cup (A \cap B).$$

(3 marks) Suppose $x \in B$. If $x \in A$, then $x \in A \cap B$. If $x \notin A$, then $x \in B \setminus A$, so

$$x \in (B \setminus A) \cup (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A) \cup (A \cap B).$$

(1 mark) Hence $x \in (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$. Since x is arbitrary, it follows that

 $A \cup B \subseteq (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$

and so $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$.

- **2.** (a) (**3 marks**) $\mathcal{P}(A) = \{ \emptyset, \{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, \{1,3,5\} \}.$
 - (b) (3 marks) $\mathcal{P}(B) = \{ \emptyset, \{3\}, \{7\}, \{3,7\} \}.$
 - (c) (4 marks) $\mathcal{P}(A \cap B) = \mathcal{P}(\{3\}) = \{\emptyset, \{3\}\}.$
 - (d) (**5 marks**) $\mathcal{P}(A \cup B) = \mathcal{P}(\{1, 3, 5, 7\})$, so

$$\begin{aligned} \mathcal{P}(A \cup B) &= \{ \varnothing, \{1\}, \{3\}, \{5\}, \{7\}, \\ &\{1,3\}, \{1,5\}, \{1,7\}, \{3,5\}, \{3,7\}, \{5,7\}, \\ &\{1,3,5\}, \{1,3,7\}, \{1,5,7\}, \{3,5,7\}, \{1,3,5,7\} \}. \end{aligned}$$

3. (a) (5 marks) Let $A = \{3\}$ and $B = \{7\}$. Then $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{3\}, \{7\}\}$ and $\mathcal{P}(A \cup B) = \mathcal{P}(\{3,7\}) = \{\emptyset, \{3\}, \{7\}, \{3,7\}\}$, so that

$$\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$$

(b) (5 marks) Suppose $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ and let $x = A \cup B \in \mathcal{P}(A \cup B)$. Then $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$.

If $x \in \mathcal{P}(A)$, then $x = A \cup B \subseteq A$. But $B \subseteq A \cup B$, so $B \subseteq A$. If $x \in \mathcal{P}(B)$, then $x = A \cup B \subseteq B$. But $A \subseteq A \cup B$, so $A \subseteq B$. Thus either $B \subseteq A$ or $A \subseteq B$.

(5 marks) Suppose $B \subseteq A$ or $A \subseteq B$.

If $B \subseteq A$ and $x \in \mathcal{P}(B)$, then $x \subseteq B \subseteq A$ and so $x \in \mathcal{P}(A)$. Thus $\mathcal{P}(B) \subseteq \mathcal{P}(A)$ and $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A)$.

On the other hand if $B \subseteq A$ then $B \cup A = \{x : x \in B \text{ or } x \in A\} = \{x : x \in A\} = A$, $\mathcal{P}(A \cup B) = \mathcal{P}(A) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

Similarly, if $A \subseteq B$ then we replace A by B and B by A in the proof above, so $\mathcal{P}(A \cup B) = \mathcal{P}(B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.