1. (2 marks each)

- (a) "0 is a positive number" is a statement.
- (b) "m is an even number" is a predicate (with m as a free variable).
- (c) "If n is an even number then n-1 is odd" is a predicate (with n as a free variable) and a statement.
- (d) "Is 2 a prime number?" is neither a statement nor a predicate.
- (e) "Every odd number is the sum of three odd numbers" is a statement.

2. (4 marks each)

(a) We have the following truth table:

A	B	$\sim A$	$\sim B$	$A \implies \sim B$	$\sim A \implies B$	$(A\implies \sim B) \land (\sim A\implies B)$
Т	Т	F	\mathbf{F}	\mathbf{F}	Т	F
Т	\mathbf{F}	F	Т	Т	Т	Т
\mathbf{F}	Т	Т	\mathbf{F}	Т	Т	Т
F	\mathbf{F}	Т	Т	Т	\mathbf{F}	F

Since the last column contains both "T" and "F", $(A \implies \sim B) \land (\sim A \implies B)$ is neither a tautology nor a contradiction.

(b) We have the following truth table:

A	B	$\sim A$	$\sim A \implies B$	$A \implies B$	$(\sim A \implies B) \land (A \implies B)$
Т	Т	F	Т	Т	Т
Т	\mathbf{F}	F	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	Т	Т	Т	Т	Т
\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	Т	F

Since the last column contains both "T" and "F", $(\sim A \implies B) \land (A \implies B)$ is neither a tautology nor a contradiction.

(c) We have the following truth table:

A	В	$\sim A$	$\sim B$	$\sim A \implies \sim B$	$A \implies B$	$(\sim A \implies \sim B) \lor (A \implies B)$
Т	Т	F	\mathbf{F}	Т	Т	Т
Т	\mathbf{F}	F	Т	Т	\mathbf{F}	Т
F	Т	Т	\mathbf{F}	\mathbf{F}	Т	Т
\mathbf{F}	\mathbf{F}	Т	Т	Т	Т	Т

Since the last column contains only "T"s, $(\sim A \implies \sim B) \lor (A \implies B)$ is a tautology. (d) We have the following truth table:

A	B	$A \implies B$	$\sim (A \implies B)$	$B \wedge \sim (A \implies B)$
Т	Т	Т	\mathbf{F}	\mathbf{F}
Т	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}
\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}

Since the last column contains only "F"s, $B \wedge \sim (A \implies B)$ is a contradiction.

3. (2 marks each)

- (a) The contrapositive of A(n) is "If n + 1 is not an odd number then n is not a natural number".
- (b) The converse of A(n) is "If n + 1 is an odd number then n is a natural number".
- (c) The negation of A(n) is "n is a natural number but n+1 is not an odd number".
- (d) Yes, A(n) is true for some n: for example, A(2) is true.
- (e) No, A(n) is not true for every natural number n: as a counterexample, A(3) is false.
- (f) Since the contrapositive is equivalent to A(n) itself, from (d) and (e) we see that the contrapositive is true for some $n \in \mathbb{N}$ but not for all $n \in \mathbb{N}$.
- (g) The converse is true for all n, since by assumption $n \in \mathbb{N}$ is a natural number.
- 4. (a) (3 marks) Suppose n is odd. Then n = 2k + 1 for some natural number k, so

$$f(n) = (2k+1)^2 + 2$$

= 4k² + 4k + 1 + 2
= 2(2k² + 2k + 1) + 1

and $2k^2 + 2k + 1 \in \mathbb{N}$, so f(n) is odd.

(b) (3 marks) Suppose n is not odd. Then n is even, so n = 2k for some $k \in \mathbb{N}$. But then

$$f(n) = (2k)^{2} + 2$$

= 4k² + 2
= 2(2k² + 1).

and $(2k^2 + 1) \in \mathbb{N}$, so f(n) is even. Thus f(n) is not odd. Hence, by contraposition, if f(n) is odd then n is odd.

(c) (4 marks) Suppose, for a contradiction, that f(n + k) is even and (n and k are both even or odd) is false, in other words one of n and k is even and another is odd. But then n + k is odd, so by part (a) we have f(n + k) is odd, a contradiction. Hence, by contradiction, if f(n + k) is even then n and k are either both odd or both even.