THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2002 Campus: City

MATHEMATICS

Principles of Mathematics

(Time allowed: THREE hours)

NOTE: This is an OPEN BOOK examination. Answer ALL **EIGHT** questions. All questions carry equal marks.

1. Let P be the statement that if x and y are both odd integers, then xy is an odd integer.

(a)	Write down the negation of P .	(2 marks)
(b)	Write down the contrapositive of P .	(2 marks)
(c)	Write down the converse of P .	(2 marks)
(d)	Use a direct proof to show that P is true.	(5 marks)
(e)	Use a proof by contradiction to show that P is true.	(4 marks)
(f)	Determine whether or not the converse is true. Explain fully with reasons.	(5 marks)

2. (a) Let $\mathbf{0} = (0,0,0)$, $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$ and $\mathbf{k} = (0,0,1)$ be vectors of vector space \mathbb{R}^3 , and $A = \{\mathbf{0}, \mathbf{i}, -\mathbf{i}, \mathbf{j}, -\mathbf{j}, \mathbf{k}, -\mathbf{k}\}$. Let * be the cross product \times of \mathbb{R}^3 , that is,

$$(a_1, a_2, a_3) * (b_1, b_2, b_3) = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}.$$

- (i) Show * is a binary operation of A, and construct its Cayley table. (8 marks)
- (ii) Show * is not associative. (6 marks)
- (b) Let $D_4 = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$ be the group of all symmetries of a square under composition \circ , and let $S = \{R_0, H, V, D\}$ be a subset of D_4 .

(i) Show (S, \circ)	has an identity.	2 marks)

- (ii) Show each element of S has an inverse in S. (2 marks)
- (iii) Show S is *not* a subgroup of D_4 . (2 marks)

CONTINUED

3. (a) Prove by mathematical induction that, for every natural number $n \in \mathbb{N}$, $9^n - 8n - 1$ is divisible by 64.

(12 marks)

(b) Let | be the operation of division on the set of natural numbers N, and a, b ∈ N. Show that the set {a, b} has a least upper bound in the poset (N, |). Find the least upper bound of the set {21, 24}.

(8 marks)

4. (a) Let f(x) and g(x) be polynomials in $\mathbb{Z}_5[x]$ defined by

$$f(x) = x^4 + 2x^3 + 4x^2 + 2x + 3$$
, $g(x) = 4x^3 + 2x^2 + 4x + 2$.

Here for simplicity, we denote \bar{a} by a for $\bar{a} \in \mathbb{Z}_5$. Find quotient q(x) and remainder r(x) when f(x) is divided by g(x). Find also a greatest common divisor of f(x) and g(x).

(12 marks)

(b) Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients. For $f, g \in \mathbb{R}[x]$, define $f \sim g$ if f' = g', where f' is the derivative of f. Show \sim is an equivalence relation. Find the equivalence class $[x^2]$ containing x^2 .

(8 marks)

5. (a) Let $Mat_2(\mathbb{R})$ be the group of all 2×2 matrices with entries from the set of real numbers \mathbb{R} under matrix addition. Let Tr be the function from the group $Mat_2(\mathbb{R})$ to the group \mathbb{R} defined by

$$Tr\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right) = a+d.$$

Show Tr is a group homomorphism, and determine with reasons whether or not Tr is a group isomorphism. (8 marks)

- (b) Let $U(10) = \{1, 3, 7, 9\}$ be the group under the operation of multiplication modulo 10. Write out the Cayley table of $(U(10), \cdot_{10})$ and show $(U(10), \cdot_{10})$ is isomorphic to the group $(\mathbb{Z}_4, +_4)$. (12 marks)
- **6.** (a) Find all integers $x \in \mathbb{Z}$ such that

$$35x \equiv 14 \pmod{42}.$$
 (7 marks)

- (b) Let n be a natural number with $n \ge 2$.
 - (i) If n is a prime, then show that

$$(n-1)! \equiv -1 \pmod{n}.$$
 (9 marks)

(ii) Suppose n is not a prime. Show by an example that there is some integer n with $n \ge 2$ such that

$$(n-1)! \not\equiv -1 \pmod{n}. \tag{4 marks}$$

CONTINUED

(i) Show that $\{a_n\}_{n=1}^{\infty}$ is monotone and bounded.

(8 marks)

MATHS 255

(ii) Find the greatest lower bound and the least upper bound of the set $\{a_n\}_{n=1}^{\infty}$ and determine whether or not either is an element of $\{a_n\}_{n=1}^{\infty}$. Find also the limit $\lim_{n \to \infty} a_n$.

(5 marks)

(b) Let S and T be two non-empty sets of real numbers such that $x \leq y$ for all $x \in S$ and $y \in T$. Let lub S be the least upper bound of S and glb T be the greatest lower bound of T. Show that both lub S and glb T exist and

$$lub S \le glb T. \tag{7 marks}$$

8. Let f and g be continuous functions from \mathbb{R} to itself. Define

$$h(x) = \begin{cases} f(x) & \text{if } x \ge 0, \\ g(x) & \text{if } x < 0. \end{cases}$$

(a) Suppose f(0) = g(0). Prove from first principles that h(x) is continuous at 0.

(10 marks)

(b) Suppose $f(0) \neq g(0)$. Prove from first principles that h(x) is not continuous at 0.

(10 marks)