DEPARTMENT OF MATHEMATICS

MATHS 255 2002 Semester 1 Exam solutions

1. (18 marks)

(a)

Prove that if  is an odd integer then z? is an odd integer.

soln: x odd means x = 2m + 1 for some m € Z.

Soz2 =2m(2m+1)+2m+1=2(m>2m+1) +m) + 1.
Since m(2m + 1) + m is an integer

this shows z2 is odd.

Consider the statement:

2

if  is an even integer then z“ is an even integer.

Write down the statement converse to this statement and then prove this converse statement
is true.

soln: Converse is:
if 22 is an even integer then x is an even integer.

Proof: (Setting the universe of discourse to be the integers) this statement is equivalent to the
contrapositive statement:

2

x is a non-even integer then x* is an non-even integer.

That is we should show that if = is an odd integer then z?

above.

If A, B are sets then prove that

is an odd integer. This was done

B\ (B\A)=AnB.

soln: We provea € B\ (B\ A) & a€ ANB.

=: Suppose a € B\ (B\ A). Thena € Banda ¢ B\ A

Now B\ A={be B : b¢ A}. So it must be that a € A. Since a is in both B and A we have
acANB.

< Suppose that a € AN B then a € Aand a € B and so a ¢ B\ A. So we have a € B and
a ¢ B\ A. This means a € B\ (B\ A).
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2. (18 marks) Let A be a non-empty set and let B be a fixed subset of A. Define a relation ~ on P(A)

by

(a)

For C,D € P(A) C~Difandonlyif CNB=DnNB.

Show that ~ is an equivalence relation on P(A).

soln:

Reflexive since: for all C' € P(A), C N B = C N B (set equality is reflexive!) so C' ~ C.
Symmetric since: for all C;D € P(A), CNB=DNB < DNDB=CnNDB (set equality is
symmetric) so C ~D < D~ C.

Transitive since: for all C, D, E € P(A), since C ~ D and D ~ E means CNB = DNB = ENB
and so C' N B = EN B (set equality is transitive), that is C ~ E.

For the particular case where A = {1,2,3,4,5}, and B = {1,2,5}, find the equivalence class of
C ={2,4,5}, under ~.

soln: [C] ={{2,4,5},{2,5},{2,3,5},{2,3,4,5} }.

3. (16 marks) Give a carefully presented proof by induction that for all n € N, 3 divides 22" — 1.
soln: For n € N let P(n) be the statement that 3 divides 22" — 1.
P(1)istrue: 22 - 1=4-1=3=3-1.

Suppose P(k) is true. Then 2% — 1 = 3¢ for some ¢ € Z. Consider 22(:+1) — 1,
22(kt1) 1 = 9%+2 _ ] —92.92F 1 —4.92%% 1 =4(2%% —2)+4-1=4-30+3=3-(4+1).
Since 4¢ + 1 € Z this shows that 3 | 22(-*1) — 1. That is P(k) imples P(k + 1).

Thus by the priciple of induction we can conclude that V € N P(n) is true.

4. (20 marks)

(a)

Show the equation 7 = 6 -1 T has no solutions in Z1».

soln: If there is a solution € Zis to 7 = 6 -12 T then there are integers z,k such that
7 = 6z + 12k. This is clearly impossible since since if 2,k € Z then 6 | (6 + 12k) but 6 does
not divide (the prime number) 7.

Let a,b,n € N. Suppose there exists an integer ¢ such that ac =1 (mod n). Show that the
equation @ -, T = b has a unique solution = € Z,.

soln: If ac =1 (mod n) then@-, ¢ =¢-, @ = 1. Given thisT=¢-, b is a solution since
- (C '”,b) =(@¢) nb=1-,0=1-b=">0. On the other hand if Z € Z, is a solution to

‘n T = b, then

ol ol
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5. (8 marks) Let G, H and J be groups, and let f: G — H and g : H — J be homomorphisms. Show

that g o f is a homomorphism.

soln: Let z and y in G be given. then

go f(zy) = g(f(xy)) (def of composite)
(F@)f() (Fahom)

= g(f(2))g(f(y)) (g ahom)

= go f(x)go f(y), (def of composite)

I
Q

|
Q

proving g o f is a homomorphism.

. (10 marks) Let G be a group, and let H and K be subgroups. Show that their intersection, H N K,
is a subgroup.

soln: Since it contains the identity, e say, it is nonempty. Suppose x € H N K and y € H N K are
given. Then 7'y € H and 2~ 'y € K since H and K are subgroups. Then 7'y € H N K, and
therefore H N K is a subgroup.

. (14 marks) Let G be a group with identity eg. Let H be a group with identity ey. Let f: G — H
be a homomorphism. Prove that if {z € G : f(z) = ex} = {ec}, then f is one to one, adding words
to this calculation.

f@)=f@). f@ Yy =fa W)=, f"fy) =) ' fy)=es. z7'y=cq. z=y

Prove the converse.

soln: Suppose z € G and y € G are given, and f(x) = f(y). Then

flz™'y) = f(@™)f(y) fahom
= f(x)"'f(y) a theorem on homs
F) ™ )
= egy.

Hence 7'y = eg. Hence z = y. Thus f is one to one.

Conversely, we suppose f is one to one. We want to show {x € G : f(z) = ey} ={eg}. Let z € G
be given, satisfying f(z) = ey. Now f(eq) = em. Since fis 1-1, z = eq. Thus {z € G : f(x) =
en} ={eac}

. (12 marks) Let A be a nonempty set and let @ € A be given. Let S4 be the group of bijections
f:+A— A under composition. Show that H = {f € S4 : f(a) = a} is a subgroup of S4.

soln: H is nonempty since e € H, e being the identity. Let f € H and g € H be given. Claim
fg~t € H. Since g(a) = a, we have g~'(a) = a, and hence fg~!(a) = a. Hence the claim is true.
Hence H is a subgroup of S4.

. (12 marks) Prove (0,1) has no least element.

soln: Suppose x is the least element. Then 1)z € (0,1) and 2) for all y € (0,1), y > . Now by 1),
x/2 > 0. Also, /2 < x < 1, giving /2 € (0,1). By 2), /2 > x. This contradicts /2 < x. Hence
there is no least element z.
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10.

11.

12.

13.

(12 marks) Let A and B be subsets of R. Suppose A is nonempty, A C B, and B is bounded above.
Show that the least upper bounds of A and B exist, and satisfy lub A < lub B.

soln: Since A C B and B is bounded above, so is A. Since A is nonempty, [.u.b. A exists. Since A is
nonempty and A C B, B is nonempty. Since it is bounded above, l.u.b.B exists. Let M = l.u.b.B.
For all a € A, a € B, and hence a < M. Thus M is an upper bound for A, which implies
M > lu.b.A. Thus lub A <lub B.

(12 marks) Suppose g : R — R satisfies lim, o g(x) = oo. Show from first principles that
lim, o —0.5g(x) = —o0.
soln: Let M € R be given. We claim there exists NV in R, such that for all x > N, —0.5¢g(x) < M.

Equivalently, g(x) > —2M. But g(x) — oo as * — 00, hence there exists N € R, such that for all
x> N, g(x) > —2M. Thus lim,_,+ —0.5g(z) = —o0.

(18 marks) Let f and g be functions from R to R. Let a and M be real numbers. Suppose
lim,_,, f(z) = 0, and there exists 6; > 0 such that for all z € (a — d1,a + d1), |g(x)] < M. Show
from first principles that lim,_,, f(z)g(z) = 0.

soln: We want to show that for all € > 0, there exists § > 0, such that if z € (a — §,a + ¢), then
|f(x)g(z)] < e. Let e > 0be given. Since lim,_,, f(x) = 0, take do > 0 such that if x € (a—0d2, a+32),
then |f(x)| < e/M. Let § = min(dq,d2) > 0. Let = € (a — J,a + J) be given. Then

[f(@)g(z)] < (¢/M)M

= €.

(10 marks) Suppose {a,} is a sequence of real numbers converging to 0 as n — co. Suppose z is a
real number, and for all n, x < a,. Show z <0.

soln: Suppose not, then z > 0. Since a, — 0, there exists k € N such that for all n > k,
ap € (—x,z). Take n > k. Then a,, < x, but a, > = by hypothesis, a contradiction. Hence z < 0.
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