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Experiment 108: The Gravitational Force and Orbits of Comets

Aims

The aim of this experiment is to study some basic celestial mechanics by computing the orbit of a comet
about the Sun. Issues to be addressed include the variation of the kinetic and potential energies of the comet
with time, the angular momentum of the comet, and the eccentricity and curvature of its orbit.

Simulating the Equations of Motion

We use a Copernican coordinate system and fix the Sun at the origin. We consider only the gravitational
force between the comet and the Sun, and neglect all other forces (e.g., forces due to the planets). The force

on the comet is
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where r is the position of the comet, m is its mass, M (= 1.99 x 10%° kg) is the mass of the Sun, and G
(= 6.67 x 10! m?/kgs?) is the gravitational constant.

The natural units of length and time for this problem are not metres and seconds. Rather, as a unit of
distance we will use the astronomical unit (1 AU = 1.496 x 10'* m), which equals the mean Earth-Sun
distance. The unit of time will be the AU year (the period of a circular orbit of radius 1 AU). In these units,
the product GM = 47?2 AU3/yr2. We take the mass of the comet, m, to be unity; in MKS units the typical
mass of a comet is 101°+3 kg.

We assume that the trajectory of the comet lies in the zy-plane, so that we may write the position and
velocity vectors as
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The equations of motion of these two vectors are
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A script file called comet.m has already been written for you to use. Type in the command type comet.m
to see this file. This program solves the equations of motion using a higher-order (Runge-Kutta) integration
method (the linear approximation, or Euler, method is not very suitable for this problem as it requires
extremely small timesteps in order to avoid “blowing up” due to numerical instability).

The program stores the position and velocity vectors of the comet in the arrays rplot and vplot, respectively.
In particular, the position vector after j-1 timesteps is given by rplot(j, :), and the corresponding velocity
vector is given by vplot(j,:). The time after j-1 timesteps is stored in tplot(j).

Try running comet .m for a variety of different input parameters. For example, start with the following inputs,
which correspond to a comet starting at the position r = (1,0,0) AU with velocity v = (0,4,0) AU /yr:

Enter initial radial distance (AU): 1

Enter initial tangential velocity (AU/yr): 4
Enter number of steps: 500

Enter time step (yr): 0.001

You will see the comet’s trajectory drawn in the xy-plane. Note its elliptical shape, with the Sun at one
focus of the ellipse.
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(1) Try different values of the initial tangential velocity. Describe what happens to the orbit as this initial
velocity is made larger or smaller. Note that for small values of the initial tangential velocity you
may need to decrease the size of the timestep, otherwise numerical instability causes the trajectory to
deviate from an ellipse. For large values of the initial velocity you may need to use more timesteps to
see the full shape of the trajectory.

Kinetic Energy and Potential Energy

The kinetic energy Fx and gravitational potential energy Ep of the comet are given by
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Note that comet.m defines the constant GM = 4*pi~2 and defines mass = 1 to be the mass of the comet.
(2) Write a script file (call it kepler.m) that computes and plots Ex, Ep, and their sum Ex + Ep versus

time for a particular trajectory (i.e., for a particular rplot and vplot generated by comet.m). Describe
in words what your results illustrate.

Angular Momentum

The angular momentum of the comet about the Sun is
L=m(rxv).
(3) Using the product rule and the properties of the cross product and the gravitational force, show that
the angular momentum of the comet is constant with time (i.e., calculate dL/dt).

(4) Add a line to your script file kepler.m which computes the angular momentum vector of the comet at
each timestep. Hence, confirm for several different trajectories that L is a constant, and give its value
for each case.

(5) Optional: Referring to Figure 1 below, the area swept out by the position vector in the (small) time
interval At is approximated by AA = 1 ||r(t) x r(t + At)||. (Why?) Using this, show that the rate of
change of the area, AA/At, is a constant. This amounts to Kepler’s Second Law of Planetary Motion
— the line joining the Sun and a planet (or orbiting comet) sweeps out equal areas in equal times.
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Figure 1: Change in position vector in time interval At.

Eccentricity of the Orbit

The eccentricity of an elliptical orbit is given by the formula
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e=1/1——
a?’

where a and b are the semimajor and semiminor axes of the ellipse, respectively (see Figure 2).
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Figure 2: Elliptical orbit about the Sun.

Consider the following combinations of initial position and velocity vectors:
(a) r(t =0)=(1,0,0) AU, v(t =0) = (0,3,0) AU/yr
(b) r(t =0) = (1,0,0) AU, v(t =0) = (0,4,0) AU/yr
(¢) r(t=0)=(1,0,0) AU, v(t =0) = (0,5,0) AU/yr

(6) Run comet.m with these inputs and, by examining rplot, determine a and b for each case. Hence,
calculate the eccentricity e for each orbit. Also compute the value of h = ||r x v|| = ||L/m|| for each
case (by running kepler.m). You will use e and h below.

Polar Coordinates

Another way of representing the (two-dimensional) orbit is in terms of polar coordinates r = ||r|| = /22 + 32
and § = tan~!(y/x).

(7) Add a line to your script file kepler.m which computes the angle 6 at each point along the trajectory.
Use the Matlab function atan2(y,x) for the inverse tangent.

You can now use the command polar(theta,rlength) to generate a polar plot of a particular orbit. Try
this for the three cases specified above.

Using calculus and geometry, one can show theoretically that the orbit of the comet in polar coordinates is
in fact given by the expression
h?/GM
r=-———-
1—ecos(f)’

which describes an ellipse of eccentricity e with one focus at the origin (i.e., at the Sun). This, of course, is
Kepler’s First Law of Planetary Motion.

(8) For the three sets of initial conditions specified above, use the following commands to superimpose the
simulated and theoretical orbits on a polar graph. For the theoretical orbits, use the values of e and h
that you calculated in question (6) (you will need to define the variables e and h).

kepler

polar(theta,rlength)

hold on

polar(-pi:pi/20:pi, (L~2/GM)./(1-e*cos(-pi:pi/20:pi)),’*’)
hold off
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Curvature

The curvature of a curve at a given point is a measure of how quickly the curve changes direction at that
point. Formally, it is defined as the magnitude of the rate of change of the unit tangent vector to the curve
with respect to arc length, i.e.,

dT H dr/dt v
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and s is the arc length. For a small timestep At, an approximation to the curvature is given by
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(9) Add a for loop to your script file kepler.m which calculates an estimate for the curvature k at each
point along the trajectory according to the approximate formula given above. For initial conditions
(a) and (b) given earlier, plot the curvature versus time. Explain what you see. (Note: You will need
to write plot (tplot (1:nStep-1) ,kappa) to plot the curvature versus time.)

(10) Work out the maximum and minimum values of the curvature, Kmax and Kmin, for both cases, and
identify the points (give x and y coordinates) on the trajectory where they occur. On zy plots of
each trajectory, sketch (by hand) circles of radii 1/kmax and 1/kmin which touch the trajectory at the
relevant points



