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NOTE: Answer THREE questions. All question carry equal marks. This note is not yet long
enough, so I will make it longer.
I will also put in a paragraph break.
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1. Recall that the ordered pair 〈x, y〉 is defined by

〈x, y〉 = {{x}, {x, y}}.

(a) Show that the axiom system ZFC, as described in the ATTACHMENT (page 4), guar-
antees that if x and y are sets then 〈x, y〉 is a set.

(b) Show that the axiom system ZFC guarantees that if A and B are sets then A× B is a
set.

(c) Show that we can express the statement “R is a well-order on X” in LST.

(d) Let X be a set. Show that the axiom system ZFC guarantees that the collection of all
ordinals α such that there is a 1–1 function f : α→ X is a set. [You may assume that
if 〈Y,R〉 is a well-ordered set then there is a unique ordinal which is order-isomorphic
to 〈Y,R〉, and that we can express “α is an ordinal which is order-isomorphic to 〈Y,R〉”
in LST.]
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2. (a) Recall that addition and multiplication on ω are defined by

m+ 0 = m

m+ n+ = (m+ n)+

m · 0 = 0

m · n+ = m · n+m

Show from these definitions that addition and multiplication are associative and com-
mutative, and that multiplication is distributive over addition.

(b) Addition of ordinal numbers is defined by

α + 0 = α

α + β+ = (α + β)+

α + η =
⋃
{α + β | β ∈ η } when η is a limit ordinal

Show that addition of ordinal numbers is not commutative.

3. Assume that the natural numbers have been constructed with their familiar arithmetic and
ordering properties. Describe in detail how the integers can be constructed. Explain how
addition, multiplication and ordering of integers are defined, and show that they are well-
defined. Show that there exists a 1–1 function θ : ω → Z such that for all m,n ∈ ω,

θ(m+ n) = θ(m) +Z θ(n)

θ(m · n) = θ(m) ·Z θ(n)

m ≤ n ⇔ θ(m) ≤Z θ(n)

4. Let R be a relation on a set A. Then R is said to be well-founded if, for every non-empty
B ⊆ A, there is some R-minimal element of B (in other words, some x ∈ B such that if
y ∈ B with y Rx then y = x). The pair 〈A,R 〉 is said to support induction if, for every
formula ϕ(x) of LST, if

∀x ∈ A(∀y ∈ A((y Rx ∧ y 6= x)→ ϕ(y))→ ϕ(x))

then ϕ(x) holds for all x ∈ A.

(a) Prove that R is well-founded if and only if 〈A,R 〉 supports induction.

(b) Assume that R is well-founded. For each x ∈ A, let

seg(x) = { y ∈ A | y Rx ∧ y 6= x }.

Let B be a set, and let

Y =
⋃
{ seg(x)B | x ∈ A }

(in other words, Y is the set of all functions whose domain is seg(x) for some x ∈ A
and whose range is a subset of B). Let H : Y → B be a function. Prove that there is a
unique function F : A→ B such that for every x ∈ A, F (x) = H(F � seg(x)).
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5. Let 〈X,≤X〉 and 〈Y,≤Y 〉 be well-ordered sets. Then 〈Y,≤Y 〉 is an end-extension of 〈X,≤X〉
if

(i) X ⊆ Y ;

(ii) for all x, y ∈ X, if x ≤X y then x ≤Y y; and

(iii) for all x ∈ X and y ∈ Y rX, x ≤Y y.

(a) Let 〈I,4〉 be a totally ordered set, and for each i ∈ I, let 〈Xi,≤i〉 be a well ordered
set. Suppose that if i, j ∈ I with i 4 j then 〈Xj,≤j〉 is an end-extension of 〈Xi,≤i〉.
Put X =

⋃
{Xi | i ∈ I } and define a relation ≤ on X by declaring that x ≤ y if and

only if x ≤i y for some i ∈ I. Show that ≤ is a well-order on X, and that 〈X,≤〉 is an
end-extension of 〈Xi,≤i〉 for each i ∈ I.

(b) Assume Zorn’s Lemma, but do not assume any other version of the Axiom of Choice.
Prove that every set can be well-ordered.

ATTACHMENT FOLLOWS
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The Axiom System ZFC

Extensionality: For any sets x and y,

x = y ⇔ ∀z (z ∈ x↔ z ∈ y).

Pairing: If x and y are sets then {x, y} is a set.

Union: If x is a set then
⋃
x = { y | ∃z (y ∈ z ∧ z ∈ x) } is a set.

Power Set: If x is a set then Px = { y | y ⊆ x } is a set.

Comprehension: If x is a set and ϕ(y) is a formula of LST then { y ∈ x | ϕ(y) } is a set.

Replacement: If x is a set and ϕ(z, y) is a formula of LST such that for each z there is at
most one y satisfying ϕ(z, y), then { y | ∃z ∈ x(ϕ(z, y)) } is a set.

Infinity: There is a set x such that ∅ ∈ x and, for every y ∈ x, y ∪ {y} ∈ x.

Foundation: If x is a non-empty set then there is some y ∈ x with y ∩ x = ∅.

Choice: If x is a set then there is a function f : Pxr{∅} → x such that for all y ∈ Pxr{∅},
f(y) ∈ y.


