THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2011 Campus: City

MATHEMATICS Accelerated Mathematics

(Time allowed: TWO hours)

NOTE: Attempt all 6 questions. The questions are NOT all of equal value. There is a total of 100 marks.

SHOW ALL WORKING. Unsupported answers may receive no marks.

Restricted calculators only.

1. (a) For the following system of linear equations:

$$\begin{cases} x + 2y - w = 4 \\ 2x + 4y + z + w = 7 \\ 2x + 4y - 3z + w = -1 \end{cases}$$

- (i) write down the **augmented matrix** of the system;
- (ii) use row operations to find the **reduced row echelon form** of the matrix in (i);
- (iii) give the **general solution** of the system.

[12 marks]

- 2. In this question you will use the points P(1, -1, 3), Q(-1, 0, 2), R(2, -1, 4) and S(2, 1, -2).
 - (a) Find the angle θ between the vectors PQ and PR.
 - (b) Find a parametric vector equation of the line through the points P and Q.
 - (c) Give the Cartesian equation of the plane through the point *S* that contains the line *L* with parametric equations $\begin{cases}
 x = 1 - t \\
 y = -1 + 3t, t \in \text{IR}. \\
 z = -2 + 2t
 \end{cases}$
 - (d) Do the line in (b) and the plane in (c) meet? If so, find their intersection, and if not, explain why not.

[16 marks]

3. (a) Let $B = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

(i) Calculate, using co-factors, the determinant of B.

Use the result in (i) to find the determinants of

- (ii) B^T ; (iii) B^{-1} ; (iv) $2B^2$.
- (b) Find the volume of the parallelepiped generated by the row vectors of the matrix B given in (a) above.
- (c) Prove that for all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{IR}^3 , $\mathbf{u} \cdot \mathbf{v} \times \mathbf{w} = \mathbf{w} \cdot \mathbf{u} \times \mathbf{v}$.

[14 marks]

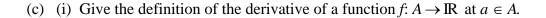
- 4. (a) Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which rotates vectors by $\frac{\pi}{3}$ about the origin, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which reflects vectors in the line y = -x.
 - (i) Find the standard matrices C_1 and C_2 of T_1 and T_2 .
 - (ii) Hence or otherwise find $T_3(\mathbf{v})$ where $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ and $T_3: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation which first rotates vectors by $\frac{\pi}{3}$ about the origin then reflects vectors in the line y = -x.
 - (b) Find the standard matrix of *S*: $\mathbb{R}^3 \to \mathbb{R}^3$ defined by $S(\mathbf{x}) = \mathbf{x} \times \mathbf{u}$, where $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$.

3 m

- **5.** (a) State the Extreme Value Theorem for a function $f: [a, b] \rightarrow \mathbb{R}$.
 - (b) An outdoor programme has several circular pieces of canvas which it can use to make conical tepees which have a slant height of 3 metres.

Find the vertical height and floor area of the tepee with the greatest volume.

You must justify your answer.



- (ii) Use the definition of the derivative to find $g'(\frac{\pi}{4})$ where $g(x) = \cos(x)$.
- (d) Find h'(x) where (i) $h(x) = x^{\frac{2}{x}}, x > 0$; (ii) $h(x) = \int_{1}^{x^{3}+1} \sin^{2}\left(\frac{\pi t}{4}\right) dt$.

[26 marks]

6. (a) A tank initially contains 10 litres of water with 1 gram of salt dissolved in it. A pipe then carries 2 litres of water per minute into the tank. The water coming into the tank contains 1 gram of salt per litre. A second pipe meanwhile carries 1 litre per minute of the mixture out of the tank.

The rate of change of salt within the tank can be modelled, until the tank is full, as

$$\frac{ds}{dt} = 2 - \frac{s}{10+t} \; .$$

- (i) Define the variables used in this model, specifying the units involved. You do NOT need to justify the differential equation given above.
- (ii) Write down the initial condition in this initial value problem.
- (iii) Solve the initial value problem.
- (iv) Determine how much salt is in the tank after 10 minutes.
- (b) Evaluate the following integrals:

(i)
$$\int \frac{\ln(x^2)}{x^2} dx$$
 (ii) $\int_{0}^{\frac{\pi}{4}} \cos(x)\sin(2x) dx$.

[20 marks]