Halin's Theorem characterizes those infinite connected graphs that have an embedding in the plane with no accumulation points, by exhibiting the list of excluded subgraphs. We generalize this by obtaining a similar characterization of which infinite connected graphs have an embedding in the plane (and other surfaces) with at most $k$ accumulation points. Thomassen~cite{T} provided a different characterization of those infinite connected graphs that have an embedding in the plane with no accumulation points as those for which the ${bf Z}_2$-vector space generated by the cycles has a basis for which every edge is in at most two members. Adopting the definition that the cycle space is the set of all edge-sets of subgraphs in which every vertex has even degree (and allowing restricted infinite sums), we prove a general analogue of Thomassen's result, obtaining a cycle space characterization of a graph having an embedding in the sphere with $k$ accumulation points. |
Keywords
Infinite planar graphs, accumulation points
Math Review Classification
Primary 05C10
Last Updated
Length
13
Availability
This article is available in: