
Is It Ever Safe to Vote Strategically?

Dr. Arkadii Slinko

The University of Auckland

Senior Lecturer

Shaun White

The University of Auckland

Student

9 July 2008

Abstract: We extend the Gibbard-Satterthwaite theorem in the following way. We

prove that an onto, non-dictatorial social choice rule which is employed to choose

one of at least three alternatives is safely manipulable. This means that on occasion

a voter will have an incentive to make a strategic vote and know that he will not be

worse off regardless of how other voters with similar preference orders would vote,

sincerely or not.
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1 Introduction

In this paper we will demonstrate why a voter might be reluctant to act on a known incentive to

vote strategically. To be specific, we will say that a voter has an incentive to vote strategically

if, either alone or in coalition with other voters having the same preferences, he or she can

manipulate the voting system under use. We will then distinguish between safe and unsafe

strategic votes. Take a voter having an incentive to vote strategically. Suppose that if the voter

acts on that incentive then he or she could realise a gain or could realise a loss, depending on

which other voters with the same preferences and having the same incentive to vote strategically

also act on that incentive (ceteris paribus). Absent the ability to co-ordinate with others, the

voter described obviously has a disincentive to vote strategically: the possibility of making

matters worse rather than better. We will say that the voter in question has an incentive to

make an unsafe strategic vote. Alternatively, if a voter has an incentive to vote strategically,

and by acting on that incentive could not realise a loss no matter which other voters with the

same preferences and the same incentive also make that particular strategic vote (cet. par.),

then we will say the strategic vote in question is safe for this voter.

We will be interested solely in situations in which a group of individuals is using a social choice

rule to reach a collective decision. We will further restrict our attention to situations in which
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the number of individuals and the number of possible decisions are both finite. Our investigation

has two aims. The first is to show by example that, in environments in which voters cannot

co-ordinate, the distinction between safe and unsafe strategic votes is worth making. The second

and more substantial aim is to extend an implication of the Gibbard-Satterthwaite (1973, 1975

respectively) theorem. Gibbard and Satterthwaite established that, under every non-dictatorial

social choice rule, a voter can have an incentive to vote strategically. Their theorem implies the

following:

Suppose an onto, non-dictatorial social choice rule is employed to choose one of at

least three alternatives. Then on occasion a voter will have an incentive to vote

strategically.

We will prove the following extension:

Suppose an onto, non-dictatorial social choice rule is employed to choose one of at

least three alternatives. Then on occasion a voter will have an incentive to make a

safe strategic vote.

It has already been shown that the fact a voter has an incentive to vote strategically does

not imply the voter will act on it. For example, even if a voter can vote strategically, the costs

of acquiring the necessary knowledge may deter a voter from doing so. This observation is a

consequence of the results of research into the computational complexity of voting strategically,

see e.g. Bartholdi et al (1989), Bartholdi and Orlin (1991) and, more recently, Conitzer and

Sandholm (2003, 2006) and Conitzer et al (2007). In addition, it is obvious that a voter having

an incentive to vote strategically but finding voting ‘dishonestly’ distasteful would have also

have a disincentive. But in such a case there is little to analyse from a social choice point of

view.

To the best of our knowledge, the distinction between safe and unsafe strategic votes, as we

define them, was first made (albeit in the context of parliament choosing rules) in Slinko and

White (2006). Parikh and Pacuit (2005) use the expression ‘safe vote’, but to mean a vote that

is strategically superior to abstention.

This paper is organised as follows. Section 2 sets out a model of social choice. Section 3 gives

five different examples of unsafe strategic votes. The remaining sections work on extending the

Gibbard-Satterthwaite theorem. Five preliminary propositions appear in Section 4. Sections 5

and 6 then present the main results. Section 5 deals with the three alternative case, Section 6

with the four-or-more-alternatives case. Section 7 concludes.
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2 The model

There are a number of procedures by which a group of individuals may make a collective choice.

Utilising a social choice rule is one such procedure. We will formally define a social choice rule

below, but essentially many of them work as follows. Each individual is asked to complete an

identical ballot paper. On his or her ballot paper, the individual must strictly rank all of the

alternatives. Ballot papers are completed in private, or simultaneously, or both. Once all ballot

papers are completed and submitted, the social choice rule responds with a single member of

the set of alternatives which is then declared the winner.

We wish to study safe and unsafe strategic voting. For that purpose we now construct a

formal model of a social choice rule.

Let A = {A,B,C, ...} be a finite set containing at least three elements (henceforth alter-

natives). Each member of a non-empty finite set of individuals [n] = {1, 2, . . . , n} (henceforth

voters) can strictly rank these alternatives. A profile is a function with domain the set of voters

and range the set of all possible strict rankings of the alternatives. Given a particular set of

voters with specific preferences, the profile of sincere preferences maps each voter to his or her

sincere ranking of the alternatives. If a profile R maps two (or more) voters to the same ranking

then we will say that these voters have identical preferences at R. A profile is completely agreed

if all voters have identical preferences at R.

There are a number of ways to represent a profile. A profile is most commonly represented

by an n-tuple R = (R1, . . . , Rn) of linear orders, where Ri is the image of the ith voter. If there

are m alternatives, we may index all m! linear orders by integers from 1 to m! and represent R

as an m!-tuple of disjoint sets Xi, i = 1, 2, . . . ,m! such that X1 ∪ X2 ∪ . . . ∪ Xm! = [n], where

Xi is the set of voters whose sincere preference is the ith linear order.

Suppose, for example, that the number of alternatives is three. Then we can index the six

possible linear orders as follows:

1 2 3 4 5 6

A A B B C C

B C A C A B

C B C A B A

A profile now can be represented by a 6-tuple of sets R = (X1,X2,X3,X4,X5,X6), where Xi,

i = 1, . . . , 6 is the set of voters mapped to the ith linear order. When voters’ identities are

unknown, we know only a 6-tuple (n1, n2, n3, n4, n5, n6), where ni = |Xi|. Such a table is called

a voting situation, see Berg and Lepelley (1994, page 135). Finally, suppose the number of voters

present is two and the number of alternatives is three. Then the profile that maps voter one to

the preference order A preferred to B preferred to C, and voter two to the order A preferred to
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C preferred to B, can be denoted (ABC,ACB); similarly with all other profiles. The manner

in which we will present a profile shall be determined by the particular aspect of the profile that

we wish to highlight.

The following notation will be useful. Let R be a profile, V any set of voters with identical

preferences at R, and L a preference order over A other than the one representing the sincere

preferences of the voters in V . Then R−V (L) shall denote the profile obtained from R by

replacing every Ri such that i ∈ V with L, ceteris paribus. R−V (L) can be read informally as

“the profile R, except that all the preferences of the voters in V have been switched to L”.

Again let V be any set of voters with identical preferences. We define a relation on the set

of alternatives as follows: if X and Y are two elements of A, then let

X ≻V Y

denote that voters in V rank X strictly above Y , and

X �V Y

denote that voters in V rank X no lower than Y .

Given a set of alternatives A and a set of voters, a social choice rule F is a mapping from

the set of all possible profiles to A.1 Voter i is a dictator for a voting rule F if he or she would

not desire to change the value of F at any profile. A social choice rule is weakly unanimous if

it selects every voter’s favorite alternative choice at all completely agreed profiles. Note that a

weakly unanimous social choice rule is necessarily onto. A social choice rule F is antagonistic

if there exists a profile at which every voter claims to rank a particular alternative X ∈ A last,

yet the value of F at that profile is precisely X.

We assume each voter knows the preferences of all other voters, knows the voting intentions

only of him or herself, and always votes when given the opportunity. We will use the following

terminology: say there are three alternatives present, and a voter prefers A to B to C. Then

we will say that the voter is ‘an ABC type’. If a voter claims to prefer A to B to C, we will say

that the voter ‘votes ABC’. Analogously with other preference relations, and when more than

three alternatives are present.

For the remainder of this section let us fix the set of alternatives A, a set of voters [n], a

profile of sincere preferences R, and a social choice rule F .

We can now move on to the more interesting definitions. The motivation for the following one

is as follows. If the number of voters is large, then the probability of someone being pivotal, i.e.

capable of changing the value of F on her own, is very small so classical individual manipulability

does not make much sense.

1It might seem more natural to set the domain of F to be the set of all possible profiles for all possible sets of

voters, but this would make subsequent sections of this paper unnecessarily complicated.
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Definition 1 (An incentive to vote strategically). Fix a voter i, and define V to be the set of

all voters with preferences identical to those of i at R. If there exists a linear order L 6= Ri over

A, and a subset V1 ⊆ V containing i such that

F (R−V1
(L)) ≻V F (R)

then we will say that, at R, voter i has an incentive to vote strategically.

This is the key concept of the paper. We note that to have incentive to vote strategically

does not mean that the voter is pivotal. What this voter can hope for is that there will be a

sufficient number of like-minded voters with the same incentive who will make a strategic move.

We make the classical social choice assumption that voters know sincere preferences of others

but cannot know their voting intentions. We also assume the absence of co-ordination of any

sort.

In some circumstances (we will present several examples in the next section) a voter may

hesitate to act on an incentive to vote strategically. One reason for hesitation would be this:

in attempting to manipulate, the voter could realise a gain or could realise a loss depending on

which other voters with the same preferences and having the same incentive also act on that

incentive. We now describe such circumstances formally.

Definition 2 (Strategic overshooting). Fix a voter i, and define V to be the set of all voters

with preferences identical to those of i at R. Suppose that there exist two sets V1 and V2 such

that i ∈ V1 ⊂ V2 ⊆ V ,2 and a linear order L 6= Ri such that:

• every voter in V2 has an incentive to strategically vote L, and

• F (R−V1
(L)) ≻V F (R) ≻V F (R−V2

(L)).

Then voter i can strategically overshoot at R.

In the circumstances described in Definition 2, each voter in V2 has an incentive to vote

strategically. Each voter in V2 also has a disincentive: the prospect of making the outcome

worse rather than better. If the ability to co-ordinate is absent then members of V1 - of which i

is one - will be uncertain how to proceed.3

If F is anonymous then overshooting occurs when too many like-minded voters act strate-

gically; by contrast, undershooting, the subject of our next definition, occurs when too few

like-minded voters act strategically. More generally, undershooting occurs when the roles of the

sets V1 and V2 are reversed.

2Please note that throughout this paper ⊂ denotes ‘is a proper subset of’ while ⊆ denotes ‘is a subset of’.
3Slinko and White (2006) suggested that in this case voters will act in accord with their attitude towards

uncertainty.
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Definition 3 (Strategic undershooting). Fix a voter i, and define V to be the set of all voters

with preferences identical to those of i at R. Suppose that there exist two sets V1 and V2 such

that i ∈ V1 ⊂ V2 ⊆ V , and a linear order L 6= Ri such that

• every voter in V2 has an incentive to strategically vote L, and

• F (R−V2
(L)) ≻V F (R) ≻V F (R−V1

(L)).

Then voter i can strategically undershoot at R. The first indented condition is implied by the

second, but is included to emphasise the symmetry between the definitions of over and under-

shooting.

In the circumstances described in Definition 3, each voter in V1 has both an incentive and a

disincentive to strategically vote L. These voters will, therefore, be uncertain how to proceed.

Note that if F is not anonymous then it may be that, in the scenario described, voting L is

safe for members of V2 − V1. Members of V1 will still be unsure how members of V2 − V1 will

behave - these latter voters might be strategically inclined, but they might be inherently honest

(or inherently daft) - and voting L will remain unsafe for V1.

Motivated by Saari (1994), we note that strategic over and undershooting can have nice

geometric interpretations. Suppose, for example, that F is a scoring social choice rule. Profiles

can then be represented by points in Euclidean space, and the space of profiles can be divided

up into regions in which F takes the same value (see Saari (1994) for the details). If a set of

voters can over or undershoot then, acting in unison, they must be able to ‘shift’ a profile all

the way across some region. The prospect of over or undershooting thus becomes more likely

when the profile of sincere preferences is close to a two (or three, or four, ...) way tie. We will

not explore the geometry further here, but do consider it would be worth future investigation.

Definition 4 (Unsafe strategic vote). Suppose that voter i can strategically over or undershoot

at the profile R. Then we will say that voter i can make an unsafe strategic vote at R.

Definition 5 (Safe strategic vote). Fix a voter i, and a profile R. Suppose that there exists a

linear order L 6= Ri such that

• at R, voter i has an incentive to strategically vote L; and

• voter i cannot strategically overshoot or strategically undershoot at R with a vote of L.

Then voter i can make a safe strategic vote at R.

It will prove useful to classify a certain kind of potential strategic move as an escape. Suppose

preferences are such that voter i ranks no element of A lower than X. Further suppose that R

is the profile of sincere preferences (over A), and F (R) = X. If, at R, voter i has an incentive

to vote strategically then voter i will be said to be able to escape at R. Notice that at R voter i
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cannot make an unsafe strategic vote, so being able to escape implies being able to make a safe

strategic vote. The concept of escaping will appear often during the proofs in later sections.

The model is now complete. The next section presents examples of safe and unsafe manip-

ulation.

3 Examples of safe and unsafe manipulation

Given any scoring social choice rule other than plurality, and a set of voters sufficiently large

(more than 50, say), it is easy to create examples of strategic overshooting.

Example 1 (Strategic overshooting, escaping under the Borda rule). Suppose 94 voters are using

the Borda rule to choose one of three alternatives and that the corresponding voting situation

of sincere preferences is (17, 15, 18, 16, 14, 14). If all voters vote sincerely then A would score

96, B 99, and C 87; B would win. If between four and eight ABC types vote ACB, ceteris

paribus, then A would win. If 10 or more ABC types vote ACB, ceteris paribus, then C would

win. So the given voting situation of sincere preferences is prone to unsafe manipulation. This

voting situation is also prone to safe manipulation: if 13 or more ACB voters vote CAB, ceteris

paribus, then C will win, and the manipulators will have made an escape.

It is also easy to use scoring social choice rules (other than plurality) to create profiles that

are unsafely but not safely manipulable. However, the examples that are readily apparent exhibit

an absence of several voter types, and have a somewhat contrived feel.

Example 2 (Strategic overshooting under scoring social choice rules: a profile that is unsafely

but not safely manipulable). Suppose 80 voters are using a scoring social choice rule to choose

one of three alternatives. Suppose that a first place ranking on a ballot is worth three points,

while a second place ranking is worth one point. Let the number of different voter types present

at the profile of sincere preferences be given by the following table:

Preference Number

order of voters

ABC 30

ACB 0

BAC 20

BCA 0

CAB 0

CBA 30

If all voters are honest then A scores 110, B 120, and C 90; B wins. Those that rank B or

C highest have no incentive to act strategically. Consider the voters of type ABC. If between
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11 and 19 of them state they are of type ACB, ceteris paribus, then A will win. If more than

21 of them state they are of type ACB, ceteris paribus, then C will win. Voters of type ABC

have no other way to manipulate the vote. Thus the profile of sincere preferences described is

’completely’ unsafe.

Example 3 below presents an example of strategic undershooting.

Example 3 (Strategic undershooting, escaping under the Borda rule). Suppose 41 voters are

using the Borda rule to select one of five alternatives. Let the number of different voter types

present at the profile of sincere preferences be given by the following table:

Preference Number

order of voters

ADEBC 0

BCADE 15

CABED 14

CEDBA 2

DABEC 10

This example does not depend on there being only a small number of different voter types present,

but such a profile eases computations. When all voters vote honestly, A scores 102, B 110, C

109, D 45, and E 21; B wins. If between 2 and 6 DABEC types vote ADEBC, ceteris paribus,

then C wins. If 8 or more DABEC types vote ADEBC, ceteris paribus, then A wins. So

DABEC voters can strategically undershoot at the profile of sincere preferences. Note that by

changing, say, four voters from being of type DABEC to being of type ADEBC we could create

a profile at which the former type could escape.

Strategic undershooting and overshooting are also possible under plurality. The examples

that we have do, however, rely upon the tie-breaking procedure adopted. We give them in the

Appendix 2.

Strategic overshooting and undershooting do not only occur under scoring social choice rules.

Example 4 (Strategic overshooting under plurality with a run-off). Suppose 23 voters are using

a plurality with a run-off social choice rule to choose one of three alternatives. Let the number of

different voter types present at the profile of sincere preferences be given by the following table:
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Preference Number

order of voters

ABC 4

ACB 6

BAC 7

BCA 0

CAB 0

CBA 6

If all voters vote sincerely then B beats A 13-10 in the run-off. If 2 voters of type ABC vote

for C in the first round, ceteris paribus, then A beats C 17-6 in the run-off. If 4 or more voters

of type ABC vote for C in the first round, ceteris paribus, then C beats B 12-11 in the run-off.

Thus the profile of sincere preferences described is unsafely manipulable.

To construct an example of an unsafe manipulation under a non-anonymous social choice

rule is trivially simple. We now turn to showing that all onto, non-dictatorial social choice rules

are safely manipulable. To avoid trivialities, we will assume throughout that more than one

voter is present.

4 Preliminary propositions

We need the following definition. Let F be a social choice rule, R a profile, L a preference order

over the alternatives, and V the entire set of voters mapped by R to some preference order other

than L. Then V1 ⊂ V will be classified as L-inferior if and only if F (R−V (L)) ≻V F (R−V1
(L)).

We allow the possibility that V1 = ∅.

Proposition 1. Let F be a social choice rule, R a profile, L a preference order over the alter-

natives, and V the entire set of voters mapped by R to some preference order other than L. If

V has an L-inferior subset then F is safely manipulable.

Proof. Let V1 be a maximal element of the set of L-inferior subsets of V partially ordered by

inclusion. We claim that were R−V1
(L) a profile of sincere preferences then it would be safely

manipulable by the voters in V \ V1. At the profile R−V1
(L), the voters in V \ V1 are the sole

voters present with their particular preferences. Furthermore, if V2 ⊆ V \ V1 one has

F ((R−V1
(L))−V2

(L)) = F (R−(V1∪V2)(L)) �V F (R−V (L)) ≻V F (R−V1
(L)).

So the claim is proven.
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Proposition 2. Let F be a social choice rule. Suppose that voter i can strategically undershoot

at R with a vote of L 6= Ri. Suppose that voter i cannot strategically overshoot at R with a vote

of L. Then F is safely manipulable.

Proof. Let V be the set of all voters having preferences identical to i at R. If V has an L-

inferior subset then we may use Proposition 1. So suppose V has no L-inferior subset. Then

F (R−V1
(L)) �V F (R−V (L)) for all V1 ⊂ V . There are now two cases to deal with. Both cases

lead to a contradiction. Firstly assume F (R−V (L)) �V F (R). Then F (R−V1
(L)) �V F (R) for

all V1 ⊆ V and i cannot undershoot by voting L at R. This is a contradiction. Secondly assume

F (R) ≻V F (R−V (L)). If there exists a non-empty V1 ⊂ V such that F (R−V1
(L)) ≻V F (R)

then we have a case of overshooting. If there does not exist such a V1 then, at R, voter i has no

incentive to strategically vote L. Both possibilities contradict earlier assumptions.

Proposition 2 has the following consequence. Suppose we wish to show that a social choice

rule F is safely manipulable. Suppose we know that, under F , voter i can manipulate unsafely

at the profile R. Then we may assume that i can strategically overshoot at R. For if i can only

strategically undershoot at R we may directly apply Proposition 2 and be done.

The following proposition will prove extremely useful.

Proposition 3. Let F be a social choice rule. Suppose that, at R, voter i can unsafely manipu-

late by strategically voting L 6= Ri. Let V be the set of voters with preferences identical to voter

i at R. If F (R−V (L)) �V F (R) then F is safely manipulable.

Proof. Suppose that F (R−V (L)) �V F (R). Since R is unsafely manipulable, there must exist

a nonempty V1 ⊂ V such that F (R) ≻V F (R−V1
(L)). We now have F (R−V (L)) �V F (R) ≻V

F (R−V1
(L)). So V1 is an L-inferior subset of V . Then by Proposition 1, F is safely manipulable.

Proposition 4. If a social choice rule F is non-contsant and antagonistic then it is safely

manipulable.

Proof. There exists a configuration of preferences such that (i) R is the profile of sincere prefer-

ences, (ii) every voter considers (without loss of generality) A to be the least desirable alternative

and (iii) F (R) = A. F is not constant, so there exists a profile S = (S1, S2, S3, ...) such that
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F (S) = B 6= A. Consider the finite sequence of profiles

R0 = R,

R1 = R−{1}(S1),

R2 = (R−{1}(S1))−{2}(S2),

R3 = ((R−{1}(S1))−{2}(S2))−{3}(S3),

· · ·

S

The value of F at R is A. The value of F at S is B. Let m be the largest integer such that

F (Rm) = A. Then if Rm was a profile of sincere preferences it would be safely manipulable by

voter m + 1. In fact, m + 1 could escape at Rm.

5 Social choice rules: three alternatives

This section proves that all onto, non-dictatorial social choice rules used to choose one of precisely

three alternatives are safely manipulable. We will make use of the theorem that we are extending:

Theorem 1. (Gibbard-Satterthwaite). An onto and non-dictatorial social choice rule used to

choose one of at least three alternatives is manipulable.

Proofs can be found in the original papers Gibbard (1973) and Satterthwaite (1975). Easily

read proofs may also be found in Schmeidler and Sonnenschein (1978) and Barbera and Peleg

(1990).

Lemma 1. Suppose the number of voters is two, the number of alternatives is three, and F is

an onto and non-dictatorial social choice rule. Then there exists a voter i, a profile of sincere

preferences R, and a linear order L 6= Ri such that if V is the set of all voters with preferences

identical to i at the profile R, then

F (R−U (L)) �V F (R)

for all subsets U ⊆ V , and F (R−W (L)) ≻V F (R) for at least one subset W ⊆ V .

Proof. F is onto and non-dictatorial, so the Gibbard-Satterthwaite theorem implies F is ma-

nipulable. Suppose that voter i ∈ {1, 2} can manipulate the profile R with a vote of L 6= Ri. If

R1 6= R2 then clearly we are done. So suppose R1 = R2. Then the set of voters with preferences

identical to i at R is V = {1, 2}. For some V1 ⊂ V we have F (R−V1
(L)) ≻V F (R). We further

may assume that this manipulation is unsafe. Then F (R) ≻V F (R−V (L)). Without loss of any

generality let i be an ABC type, and V1 = {1}. Then

A = F (L,ABC) ≻V B = F (ABC,ABC) ≻V C = F (L,L).
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Note that finding either a profile at which a voter can escape or a manipulable non-unanimous

profile is sufficient to complete the proof.

If L = BAC then any voter can escape from (BAC,BAC). For L = BCA and L = CBA

escapes are also easily found. These will be escapes from (BCA,ABC) and (CBA,ABC),

respectively. For the remaining two cases L = ACB and L = CAB see Appendix.

An immediate consequence of Lemma 1 is the following corollary.

Corollary 1. If the number of voters is two, the number of alternatives is three, and F is an

onto and non-dictatorial social choice rule, then F is safely manipulable.

We now move on to the case that n = 3 or more voters are present, and the number of

alternatives is three. A very useful construction will be the following one which reduces an

arbitrary rule to a two-voter rule.

Suppose F is a social choice rule, and there is more than one voter. Let V1 and V2 be

two non-empty sets that partition the set of voters. The two voter social choice rule, FV1,V2
,

generated by V1 and V2 is constructed as follows. The value of FV1,V2
at the two voter profile

(R1, R2) shall be the value of F when all voters in V1 report their preferences to be R1, while

all voters in V2 report their preferences to be R2.

Proposition 5. Suppose F is a social choice rule, there are three alternatives, and [n] = V1∪V2

is a non-trivial partition of the set of voters. If FV1,V2
is onto and non-dictatorial then F is

safely manipulable.

Proof. By Lemma 1 FV1,V2
is safely manipulable. We thus may assume that there exist voter

i ∈ {1, 2}, and we assume that i = 1, the linear order L, and the profile R = (R1, R2) such that

voter 1 can manipulate at R safely. Let R′ be the n tuple of preferences such that R′
v = R1

when v ∈ V1 and R′
v = R2 when v ∈ V2. Let W be the set of voters with, at R′, preferences

identical to those in V1. The preferences at R′ of the voters in W are the same as those of voter

1 at R. Either W = V1 or W = V1 ∪ V2 (the entire set of voters). Lemma 1 implies that for

either W1 = V1 or W1 = V1 ∪ V2 one has

F (R′
−W1

(L)) ≻W F (R′),

which shaows that R′ is manipulable. If this manipulation is safe we are done. If this manipu-

lation is unsafe then by Lemma 1 we have

F (R′
−W (L)) �W F (R′).

We may now apply Proposition 3 to deduce that F is safely manipulable.
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Lemma 2. Suppose the number of alternatives is three. If F is a non-dictatorial and weakly

unanimous social choice rule then it is safely manipulable.

Proof. See Appendix.

Lemma 3. Suppose the number of alternatives is three. If F is an onto and non-dictatorial

social choice rule then it is safely manipulable.

Proof. If the number of voters is either one or two, or if F is weakly unanimous or antagonistic,

then the proposition is already proven. So assume that the number of voters, n, is three or

more, and that F is neither weakly unanimous nor antagonistic.

The proof consists of several simple steps. The steps will either show directly that F is safely

manipulable, or they will show that a particular partition of the set of voters allows us to appeal

to Proposition 5 and also conclude that F is safely manipulable.

If F is not weakly unanimous then there exists a profile in which every voter has identical

preferences, but the value of F at that profile is not equal to every voter’s first choice. Let

R = (R1, ..., Rn) be the n tuple of preferences in which every voter is of type ABC. Without

loss of generality, let the value of F at R be B (were it to be C then F would be antagonistic).

Consider the profile in which every voter is of type ACB. The value of F at this profile must

be C. Were it B, F would be antagonistic. Suppose it were A. Then consider the manipulation

of R by ABC types voting ACB. Either this move is safe, or we may refer to Proposition 3 to

show that F is safely manipulable.

Let R′ = (R′
1, ..., R

′
n) be a profile such that F (R′) = A. Such a profile exists because F is

onto. Consider the finite sequence of profiles

R,

R−{1}(R
′
1),

(R−{1}(R
′
1))−{2}(R

′
2),

· · ·

R′

Suppose the mth profile is the first such that the value of F at that profile is A. Denote the

mth profile by Rm. Let Rm−1 be the profile in the sequence immediate preceeding Rm.

Consider the set of voters that, at the profile Rm−1, have preferences ABC. If they can safely

manipulate with a vote of R′
m then we are done. If not, then this manipulation is unsafe. If

they can stragically undershoot but not overshoot then by Proposition 2 we are done. Suppose

that they can strategically overshoot. We may suppose (see the proof of Lemma 1) that the

preference order represented by R′
m is either ACB or CAB. This allows us to deduce two facts

about the profile Rm. Firstly, at this profile the set of voters that have preferences ABC is
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not empty (otherwise the voters that, at Rm−1, have preferences ABC could not strategically

overshoot). Secondly, at the profile Rm the set of voters with preferences ACB and the set of

voters with preferences CAB cannot both be empty.

Let the profile Rm in set form be (1, 2, 3, 4, 5, 6). We have established that 1 6= ∅ and 2∪5 6= ∅.

Recall F (Rm) = A. If, at the profile Rm, any members of the sets 4 and 6 (supposing they

are non-empty) voted differently, the outcome would still have been A. Otherwise the voters in

these sets would find some profile to escape. Thus at the profile R∗ = (1, 2 ∪ 4 ∪ 6, 3, ∅, 5, ∅), F

must take the value A.

Consider again the profile R∗. If the entire set 5 voted differently, the value of F could not

be C. Otherwise either the voters in 5 would find R∗ to be safely manipulable, or we could apply

Proposition 3 to deduce that F is safely manipulable. Let R∗∗ = (1, 2 ∪ 4 ∪ 5∪ 6, 3, ∅, ∅, ∅). The

value of F at R∗∗ cannot be B, otherwise voters with preferences ACB could safely manipulate

at R∗∗ with a vote of CAB. Therefore F (R∗∗) = A.

Now reconsider profile R∗∗. If the entire set 3 voted differently, the value of F could not be

B. Otherwise either the voters in 3 would find R∗∗ to be safely manipulable, or we could apply

Proposition 3 to deduce that F is safely manipulable. Let R∗∗∗ = (1∪3, 2∪4∪5∪6, ∅, ∅, ∅, ∅). The

value of F at R∗∗∗ cannot be C, otherwise voters with preferences ABC could safely manipulate

at R∗∗∗ with a vote of BAC. So F (R∗∗∗) = A.

We can now finish the proof. If all voters state their preferences as ABC, F takes value B.

If all voters state their preferences are ACB, F takes value C. Neither 1 ∪ 3 nor 2 ∪ 4 ∪ 5 ∪ 6

are empty. The social choice rule F1∪3,2∪4∪5∪6 takes value A when the first voter reports their

preferences as ABC while the second reports their preferences as ACB. Hence F1∪3,2∪4∪5∪6 is

onto. F1∪3,2∪4∪5∪6 is non-dictatorial: when both voters state they have preferences ABC, it

does not take value A. So by Proposition 5 F is safely manipulable.

6 Four or more alternatives

This section deals with situations in which there are an unspecified number (greater than two)

of voters, and four or more alternatives.

Definition 6. The social choice rule F−A generated by a non-antagonistic social choice rule F

and an alternative A.

Suppose F is not antagonistic. Fix the set of voters and an alternative A. We construct a new

social choice rule, denoted F−A, designed to choose one of the alternatives A−{A}. Let R be an

arbitrary profile of preferences over the set A−{A}. Let R′ be the profile of preferences over the

original alternative set A formed by appending an A to the bottom of every preference order in

R. Then the value of F−A at R shall be the value of F at R′. Note that F−A cannot select A,

so it is satisfactorily defined.
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Proposition 6. Suppose there are at least four alternatives. Suppose an onto, non-dictatorial

social choice rule F is not safely manipulable. Then there cannot exist two alternatives A and

B such that both F−A and F−B are dictatorial.

Proof. If F is antagonistic then it is safely manipulable, so suppose it is not antagonistic. Sup-

pose voter one is a dictator for F−A. If her strongest preference is B, C, or D, then she can

achieve that outcome by placing A at the bottom of her ballot paper. If F is not safely ma-

nipulable then F takes value B (C, D, ...) whenever voter one ranks B (C, D, ...) first. F is

not dictatorial. So there exists a profile in which voter one reports A first (and, without loss of

generality, B last), but F does not take value A at that profile. Then voter one is not a dictator

for F−B . Suppose voter two is a dictator for F−B . By similar reasoning to that above, either

F is safely manipulable or F takes value A (C, D) whenever voter two ranks A (C, D) first. If

the latter then we have reached an absurdity. If voter one ranks C first and A last, and voter

two ranks D first and B last, F cannot take value C and D simultaneously.

Proposition 7. If a social choice rule F is non-dictatorial and weakly unanimous then it is

safely manipulable.

Proof. The three alternative case is proven. We shall proceed by induction. Suppose the propo-

sition is true when the number of alternatives is N − 1. Now let the number of alternatives

present be N ≥ 4. Let A be an alternative such that F−A is not dictatorial. The social choice

rule F−A inherits weak unanimity from F . Hence F−A is onto and non-dictatorial which exists

by Proposition 6. By the induction hypothesis it is safely manipulable at the profile R (of pref-

erences over A \ {A}) . Let R′ be the profile of preferences over A formed by appending A’s

to the bottom of every preference order in R. Then clearly R′ will be safely manipulable under

F .

We turn our attention to social choice rules that are not weakly unanimous. Lemma 2 and

Proposition 6 together imply Proposition 7, which in turn implies our main result, Proposition 8.

Let R denote the set of completely agreed profiles.

Proposition 8. Suppose F is a social choice rule and there are at least four alternatives.

Suppose A and B are two alternatives and B is not in the range of F−A. If B ∈ F (R) then F

is safely manipulable.

Proof. Let R be the completely agreed profile in which every voter ranks B first and A last.

Suppose R′ ∈ R and F (R′) = B. At R, voters can manipulate by voting R′
1. If this manipulation

is safe then we are done. If it is unsafe then we may apply Proposition 3 to deduce F is safely

manipulable.

15



Proposition 9. Suppose F is an onto, non-dictatorial social choice rule and there are at least

four alternatives. If alternative B /∈ F (R) and voter i is a dictator for F−B then F is safely

manipulable.

Proof. Without loss of generality we assume i = 1. Suppose F takes the value A ∈ A \

{B} whenever voter 1 ranks A first (if not, there will be a profile at which voter 1 can safely

manipulate simply by moving B to the last place on her ballot paper). If voter 1 ranks B highest

then the outcome of F must either be B or voter 1’s second choice (if not, there will be a profile

at which voter 1 can safely manipulate by placing her second choice first, and B last). If the

value of F at the profile R is B then R1 must be a linear order with B at the top (if not, voter

1 can safely manipulate at R by shifting B to the bottom of her ranking).

We now find a manipulation that allows us to apply Proposition 3. Let R be a profile such

that F (R) = B. Suppose the linear order R1 has A second. Let L be a linear order over the

alternatives such that B is first, A is second, but L 6= R1 (such a linear order exists because

there are at least four alternatives present). Let RL ∈ R be the completely agreed profile in

which every voter ranks alternatives according to the preference order L. Given that B /∈ F (R),

F (RL) 6= B. Given that voter 1 ranks A second at RL, F (RL) = A. Consider the finite sequence

of profiles

R0 = RL,

R1 = RL
−{1}(R1),

R2 = (RL
−{1}(R1))−{2}(R2),

R3 = ((RL
−{1}(R1))−{2}(R2))−{3}(R3),

. . .

R.

Notice F (R0) = A while F (R) = B. Let Rm be such that F (Rm) = A while F (Rm+1) = B. Now

suppose Rm were a profile of sincere preferences, and let V be the set of all voters with preference

order L at Rm. Then m + 1 ∈ V and B = F (Rm+1) = F (Rm
−{m+1}(Rm+1)) ≻V F (Rm) = A,

so voter m + 1 may manipulate at Rm. Moreover, this manipulation is safe: if V1 ⊆ V then at

the profile Rm
−V1

(Rm+1) voter 1 ranks B first and A second, and hence F (Rm
−V1

(Rm+1)) = A

or B.

Proposition 10. Suppose F is an onto, non-dictatorial social choice rule and the number of

alternatives is four or more. Then either F is safely manipulable or at least two alternatives are

absent from the set of values F can take at completely agreed profiles.

Proof. If F is antagonistic then we are done, so suppose it is not. Let F−A be non-dictatorial.

If F−A is onto then we are done by induction. So suppose F−A is not onto, and can never take
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the value B. If B ∈ F (R) then by Proposition 8 we are done, so suppose the contrary. If F−B

is dictatorial then we may apply Proposition 9 to deduce that F is safely manipulable. Suppose

F−B is non-dictatorial. If F−B is onto then again by a similar proof to that of Proposition 7 we

are done. If F−B is not onto then F−B can never take the value C ∈ A−{B}. If C ∈ F (R) then

by Proposition 8 we are done, so suppose the contrary. Then neither B nor C is in F (R).

Theorem 2. Suppose that the number of alternatives is at least three. Then any onto and

non-dictatorial social choice rule is safely manipulable by a single voter.

Proof. Suppose F is a social choice rule that is neither antagonistic nor weakly unanimous, and

that the number of alternatives is four or more. Further suppose neither A nor B is an element

of the set F (R). Let LAB be a fixed but otherwise arbitrary linear order of the elements of A

that has A first and B second. Let LBA be the linear order of the elements of A formed by

taking LAB and reversing the spots of A and B while leaving all other spots unchanged. A voter

whose preferences can be represented by LAB (LBA) shall be referred to as an LAB (LBA) type.

Let m ≥ 2 be the minimum possible number of voter types present when F takes the values

from the set {A,B}. Let S denote the set of profiles that have exactly m voter types present

and are mapped to A or B by F .

Suppose that no profile in S has an LAB type present. Pick R ∈ S. Let V be the entire set

of voters having the preference order R1 at R. Consider the profile R−V (LAB). F does not map

this profile to A or B because it has m(A) voter types present, and one of those types is LAB .

Then

A = F (R) = F ((R−V (LAB))−V (R1)) 6= F (R−V (LAB)).

Thus an LAB type can manipulate at R−V (LAB). If this manipulation is unsafe then we may

apply Proposition 3 to deduce F is safely manipulable. In the event that no R ∈ S has an LBA

type present, the analysis proceeds similarly to that immediately above.

Suppose that some profile in S has an LAB type present, another has an LBA type present,

but no profile in S has both present. Let R ∈ S have LAB types present. Let V be the entire set

of voters having the preference order R1 (without loss of generality R1 6= LAB) at R. Clearly,

either F (R−V (LBA)) ∈ {A,B} or the profile R−V (LBA) is manipulable by an LBA type. If the

latter manipulation is unsafe, it is nonetheless such that we may apply Proposition 3. In the

former case we obtain a profile R−V (LBA) in S where both types LAB and LBA present. This

was assumed not to be the case.

The remaining case is that some profile in S has both LAB and LBA types present. Let

R ∈ S be one such profile. Let U be the set of voters with preference LAB at R, and W be the

set of voters with preference LBA at R. Define a new partial preference relation on A as follows:

≻U&W if and only if ≻U and ≻W . Note that the restriction of ≻U&W on A \ {A,B} is a linear

order. Then
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A,B 6= F (R−U (LBA)) �U&W F (R−W (LAB)) 6= A,B.

The inequalities follow from the fact that the profiles in question have only m− 1 types present.

The direction of the preference relation is arbitrary and without loss of generality. Now

A = F (R) = F ((R−W (LAB))−W (LBA)) ≻U&W F (R−W (LAB)) 6= A,B.

So voters in W ⊂ U ∪W can manipulate at R−W (LAB) (by insincerely voting LBA rather than

sincerely voting LAB). If this manipulation is safe we are done; if not then notice that the

manipulation is such that we may apply Proposition 3.

7 Conclusion

This paper has formally distinguished between safe and unsafe manipulation of voting rules.

Examples of unsafe manipulations were presented. The Gibbard-Satterthwaite theorem was

extended to show that all onto, non-dictatorial social choice rules are safely manipulable.

Favardin and Lepelley (2006) write that ‘There has been a significant and increasing interest

during recent years in research trying to evaluate the degree of manipulability of various social

choice rules’. An investigation into the the ratio of possible unsafe manipulations to possible

manipulations under different social choice rules would be a contribution to this research.

We focused on social choice rules for two reasons. Firstly, it allowed us to formally introduce

and illustrate the concepts of over and undershooting relatively simply. Secondly, our main result

applied only to social choice rules. But the difference between safe and unsafe strategic votes is

applicable to a much wider class of choice rules. For example, Slinko and White (2006) identified

that strategic over and undershooting can occur under systems of proportional representation.

Future research might consider the over and undershooting phenomena under different classes

of choice rules. We would inparticular like to know if all systems of proportional representation

are safely manipulable by a voter more realistic than a ’daft’ one.

Informal comments: My barber volunteered the following story. He always votes because

he thinks doing so permits him to criticise the government. Several elections ago, before the

introduction of MMP, he voted for what he called one of the ’crazy’ (fringe) parties, even though

he did not particularly support them. He said he was frustrated with all the main parties, and

wanted to signal that. I asked him how he would have felt if the party he voted for had ended

up forming the government. He said he would have been horrified.
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Appendix

7.1 Proof of the remaining two cases in Lemma 1

Case 1: L = ACB. It may be convenient to refer to the table below while reading the proof.

The rows represent the vote of voter one. The columns represent the vote of voter two. Table

entries represent the value of F at that particular voter-one-vote, voter-two-vote combination.

ABC ACB BAC

ABC B

ACB A C

CAB

If F (CAB,ACB) 6= C then voter one can manipulate from (CAB,ACB) to (ACB,ACB).

So suppose F (CAB,ACB) = C. If F (CAB,ABC) = B then voter one can escape from

(CAB,ABC) to (ACB,ABC); if F (CAB,ABC) = A then voter two can manipulate from

(CAB,ACB) to (CAB,ABC). So suppose F (CAB,ABC) = C. Then F (CAB,BAC) = C (if

not, voter two can escape from (CAB,ABC) to (CAB,BAC)). Next consider (ACB,BAC).

If F (ACB,BAC) = B then voter one can escape from (ACB,BAC) to (CAB,BAC). If

F (ACB,BAC) = C then voter two can escape from (ACB,BAC) to (ACB,ABC). So let

F (ACB,BAC) = A. Then F (ABC,BAC) = A, otherwise voter one can manipulate from

(ABC,BAC) to (ACB,BAC). But now voter two can manipulate from (ABC,BAC) to

(ABC,ABC).

Case 2: L = CAB. It may be convenient to refer to the table below while reading the proof.

ABC ACB

ABC B

ACB

CAB A

If F (ACB,ABC) 6= A then voter one can manipulate (ACB,ABC) by voting CAB. So let

F (ACB,ABC) = A. If F (CAB,ACB) 6= A then voter two can manipulate (CAB,ACB) by

voting ABC. So let F (CAB,ACB) = A. If F (ABC,ACB) 6= A then voter one can manipulate

(ABC,ACB) by voting CAB. So let F (ABC,ACB) = A. If F (ACB,ACB) = A or B then

a safe manipulation is possible at (ABC,ABC). If F (ACB,ACB) = C then voter one can

manipulate from (CAB,ACB) to (ACB,ACB).
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7.2 Proof of Lemma 2

Throughout this proof we shall depict profiles in set form. We may assume that three or more

voters are present.

It suffices to show that F being unsafely manipulable implies F is safely manipulable. By

Proposition 2, without any loss of generality, suppose that ABC types may strategically over-

shoot at the profile R0. If, at R0, these ABC types can strategically overshoot by voting BAC,

BCA, or CBA then an escape can easily be found, and F is safely manipulable (see the proof of

Lemma 1 for a similar argument). So we suppose that, at R0, the ABC types are strategically

overshooting by voting ACB or CAB.

Case 1: overshooting by voting ACB. Suppose that, at R0, some ABC types can strategically

overshoot by voting ACB. Let V be the set of ABC types at R0. Then F (R0) = B and there

must exist some V1 ⊂ V such that F (R0
−V1

(ACB)) = A. Let

R2 = R0
−V1

(ACB) = (1, 2, 3, 4, 5, 6).

The intent now is to either directly show that F is safely manipulable or to demonstrate that

the two voter social choice rule generated by 1 ∪ 2 ∪ 3 and 4 ∪ 5 ∪ 6 is well defined, onto, and

non-dictatorial. This will imply safe manipulability by Proposition 5. We know that F (R2) = A,

and that both 1 and 2 are not empty. Let

R3 = R0
−V (ACB) = (∅, 1 ∪ 2, 3, 4, 5, 6).

As F (R0) = B, if F (R3) = A or B then we may apply Proposition 3 to deduce F is safely

manipulable. So suppose F (R3) = C. Next let

R1 = (1 ∪ 2, ∅, 3, 4, 5, 6).

If F (R1) = A or C then consider the manipulation of R3 by some ACB types voting ABC; if

this is unsafe we may then use Proposition 3 to deduce F is safely manipulable. So suppose

F (R1) = B. Let

R4 = (1, 2, 3, ∅, 4 ∪ 5, 6),

R5 = (1, 2, 3, ∅, 4 ∪ 5 ∪ 6, ∅),

R6 = (1 ∪ 3, 2, ∅, ∅, 4 ∪ 5 ∪ 6, ∅),

R7 = (1 ∪ 2 ∪ 3, ∅, ∅, ∅, 4 ∪ 5 ∪ 6, ∅).

If F (R4) 6= A and 4 6= ∅, then BCA types can escape (to R4) at R2. So suppose F (R4) = A

(if 4 = ∅ this is immediate as R4 = R2). If F (R5) 6= A and 6 6= ∅, then CBA types can escape

(to R5) at R4. So suppose F (R5) = A (if 6 = ∅ this is immediate as R5 = R2). Suppose, for
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now, 3 6= ∅. If F (R6) = B then consider the manipulation of R5 by BAC types voting ABC; if

this is unsafe we may then use Proposition 3 to deduce F is safely manipulable. If F (R6) = C

then some ABC types can escape from R6 (to R5). So suppose F (R6) = A (if 3 = ∅ this is

immediate). If 2 = ∅, then F (R7) = F (R6) = A 6= C. If 2 6= ∅ and F (R7) = C, some ABC

types can escape R7 (to R6). So suppose F (R7) 6= C. This implies that in the event 4∪5∪6 6= ∅,

the second voter is not a dictator for F1∪2∪3,4∪5∪6.

We now show (assuming F is not safely manipulable) that 4 ∪ 5 ∪ 6 6= ∅. We will then show

(again assuming F is not safely manipulable) the first voter is not a dictator for F1∪2∪3,4∪5∪6.

Given that F is weakly unanimous, hence onto, we will then have enough to use Proposition 5.

We need just three more profiles:

R8 = (∅, 1 ∪ 2 ∪ 3, ∅, 4, 5, 6),

R9 = (∅, 1 ∪ 2 ∪ 3, ∅, ∅, 5, 4 ∪ 6),

R10 = (∅, 1 ∪ 2 ∪ 3, ∅, ∅, ∅, 4 ∪ 5 ∪ 6).

If 3 = ∅, then F (R8) = F (R3) = C. Suppose 3 6= ∅. If F (R8) 6= C, then BAC types can escape

from R3 (to R8). So set F (R8) = C. Since F (R7) 6= C, by the weak unanimity of F , this implies

4 ∪ 5 ∪ 6 6= ∅. If 4 = ∅ then F (R9) = F (R8) = C. Suppose 4 6= ∅. If F (R9) = A, then some

CBA types can escape from R9 (to R8). So let F (R9) 6= A. If 5 = ∅ then F (R10) 6= A. Suppose

5 6= ∅. If F (R10) = A, then some CBA types can escape from R10 (to R9). So let F (R10) 6= A.

This implies that the first voter is not a dictator for F1∪2∪3,4∪5∪6.

F1∪2∪3,4∪5∪6 inherits weak unanimity from F . Hence F1∪2∪3,4∪5∪6 is onto. Then by Propo-

sition 5, F is safely manipulable.

Case 2: overshooting by voting CAB. Suppose that, at R0, some ABC types can strategically

overshoot by voting CAB. This implies F (R0) = B. Let V be the set of ABC types at R0.

There must exist some V1 ⊂ V such that F (R0
−V1

(CAB)) = A. Let

R2 = R0
−V1

(CAB) = (1, 2, 3, 4, 5, 6).

The intent now is to either directly show that F is safely manipulable or to demonstrate that

the two voter social choice rule generated by 1∪ 2∪ 5 and 3∪ 4∪ 6 is onto, and non-dictatorial.

We know F (R2) = A, and 1, 5 6= ∅. Let

R3 = R0
−V (CAB) = (∅, 2, 3, 4, 1 ∪ 5, 6).

If F (R3) = A or B then we may apply Proposition 3 to deduce F is safely manipulable. So

suppose F (R3) = C. Next let

R1 = (1 ∪ 5, 2, 3, 4, ∅, 6).
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If there are no CAB types present at R0 then R0 = R1, and F (R1) = B. Now suppose that

there are CAB types present at R0, and F (R1) 6= B; given F (R0) = B, CAB types are then

capable of escaping from R0 to R1. So let us suppose F (R1) = B. Let

R4 = (1 ∪ 2 ∪ 5, ∅, 3, 4, ∅, 6),

R5 = (1 ∪ 2 ∪ 5, ∅, ∅, 4, ∅, 3 ∪ 6),

R6 = (1 ∪ 2 ∪ 5, ∅, ∅, ∅, ∅, 3 ∪ 4 ∪ 6).

If 2 = ∅, then F (R4) = F (R1) = B. Suppose 2 6= ∅. If F (R4) 6= B then ACB types can escape

from R1 to R4. So let F (R4) = B. We note that by weak unanimity this implies 3 ∪ 4 ∪ 6 6= ∅.

If 3 = ∅, then F (R5) = F (R4) = B. Suppose 3 6= ∅; if F (R5) = A then some CBA types can

escape from R5 to R4. Let F (R5) 6= A then. If 4 = ∅, F (R6) 6= A. If 4 6= ∅ then in the event

F (R6) = A, some CBA types can escape from R6 to R5. So F (R6) 6= A. This implies the first

voter is not a dictator for F1∪2∪5,3∪4∪6.

It remains to show that the second voter is not a dictator for F1∪2∪5,3∪4∪6. For this purpose

we will need four more profiles:

R7 = (1, 2, 3 ∪ 4, ∅, 5, 6),

R8 = (1, 2, 3 ∪ 4 ∪ 6, ∅, 5, ∅),

R9 = (∅, 2, 3 ∪ 4 ∪ 6, ∅, 1 ∪ 5, ∅),

R10 = (∅, ∅, 3 ∪ 4 ∪ 6, ∅, 1 ∪ 2 ∪ 5, ∅).

If 4 = ∅, then F (R7) = F (R2) = A. Suppose 4 6= ∅. If F (R7) 6= A then BCA types can

escape from R2 to R7. So let F (R7) = A. If 6 = ∅, then F (R8) = F (R7) = A. Suppose

6 6= ∅. If F (R8) 6= A then CBA types can escape from R7 to R8. So let F (R8) = A. If

F (R9) = B then some CAB types can escape from R9 to R8. So let F (R9) 6= B. If 2 = ∅, then

F (R10) = F (R9) 6= B. Suppose 2 6= ∅. If F (R10) = B then some CAB types can escape from

R10 to R9. So let F (R10) 6= B. But then the second voter is not a dictator for F1∪2∪5,3∪4∪6.

F1∪2∪5,3∪4∪6 inherits weak unanimity from F . Hence F1∪2∪5,3∪4∪6 is onto. Then by Propo-

sition 5, F is safely manipulable.

7.3 Strategic undershooting, overshooting under plurality

Suppose 90 voters are using a plurality scoring rule to select one of the four alternatives

A,B,C,D. Suppose the rule incorporates the following tie breaking procedure: in a two-way tie

the highest scoring alternative whose name appears earliest in the alphabet wins; in a three-way

tie the highest scoring alternative whose name appears latest in the alphabet wins. As exam-

ples, A beats B in a two-way tie, while D beats B and C in a three-way tie. Let the number of

different voter types present at the profile of sincere preferences be
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Preference Number

order of voters

ABCD 22

BCDA 24

CDBA 24

DABC 20

If all voters vote truthfully then B beats C in a two way tie. Consider the position of the DABC

types. If two of them claim to rank A highest (ceteris paribus) then C wins in a three way tie.

This renders these types worse off. But if three or more of them claim to rank A first (ceteris

paribus) then A wins. Thus DABC types can strategically undershoot at the given profile of

sincere preferences. Now suppose the profile of sincere preferences is

Preference Number

order of voters

ABCD 22

BCDA 24

CDBA 24

DCBA 20

If all voters vote truthfully B beats C. If two DCBA types claim to rank A highest (ceteris

paribus) then C wins in a three way tie, while if three or more DCBA types claim to rank

A highest (ceteris paribus) then A wins. Thus DCBA types can strategically undershoot at

the given profile of sincere preferences. Note that in the first case the DCBA types have no

alternative strategic possibilities, whilst in the second case they do, and would in fact do better

to claim to rank C rather than A highest.

Consider a scoring social choice rule F . If R is a profile, then let topF (R) denote the set of

alternatives with the highest score, according to F , at R. We classify F as consistent if it meets

the following two conditions. Firstly, if R is any profile then F (R) ∈ topF (R). Secondly, if R

and R′ are any two profiles such that topF (R) = topF (R′) then F (R) = F (R′). Consistency is

a property derived from the tie-breaking procedure. If a scoring social choice rule is consistent

then, for example, whenever alternatives A and B tie for first place, the rule always picks A or

always picks B.

Proposition 11. Suppose F is a consistent plurality scoring social choice rule. Suppose that

voter i can make an unsafe strategic vote at R. Then F needs to employ a tie-breaking procedure

at R.

Proof. Let us use the following notation: if X ∈ A is an alternative and R is a profile then

we shall denote by scX(R) the score of X at R (i.e. the number of voters ranking X first at
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R). Suppose that when the profile of sincere preferences is R, voter i can strategically over or

undershoot by voting L 6= Ri. Let V be the set of voters with preferences identical to i at R. If

i can over or undershoot at R then the set S := {F (R−U (L)) | U ⊆ V } must contain at least

three elements.

Let us suppose F (R) = A. Then the linear order represented by L cannot place A first.

Otherwise no subset of V could bring about a change in the value of F by voting L (cet. par.).

So suppose the linear order represented by L places B first. Consequently, voter i’s favorite

alternative cannot be A or B; suppose it is C.

If either scA(R) < scB(R) or scA(R) < scC(R) then we contradict the supposition that

F (R) = A. If either scA(R) = scB(R) or scA(R) = scC(R) then our desired result is immediate.

So here-on suppose scA(R) > scB(R) and scA(R) > scC(R).

Suppose, for contradiction, that scA(R−V (L)) > scB(R−V (L)). Then F (R−U (L)) = F (R) =

A for all U ⊆ V and S has just one element. Suppose, again for contradiction, that scA(R−V (L)) =

scB(R−V (L)). Let U ⊆ V . Then F (R−U (L)) = F (R) = A for all U ⊂ V and F (R−U (L)) 6=

F (R) = A if and only if U = V . In which case S has just two elements. So, in order for S to

contain three or more elements, it must be that scA(R−V (L)) < scB(R−V (L))

We now have scA(R) > scB(R) and scA(R−V (L)) < scB(R−V (L)). Thus there exists W ⊂ V

such that W 6= ∅ and scA(R−W (L)) = scB(R−W (L)).

Suppose there exists a set U such that ∅ 6= U ⊂ W . Then scA(R−U (L)) > scB(R−U (L)).

The set of alternatives scoring highest at R is the same as the set of alternatives scoring highest

at R−U (L). Hence, by the consistency of F , F (R−U (L)) = A. Next, let U be such that

W ⊂ U ⊆ V . One then has scA(R−U (L)) < scB(R−U (L)), and F (R−U (L)) = B.

Therefore if S contains an element other than A or B, it is realised at R−W (L), when

scA(R−W (L)) = scB(R−W (L)), and when F must therefore be breaking a three-(or more)-way

tie.

Suppose that the set of alternatives scoring highest at R−W (L) contains A, B, and D. It is not

possible that C = D: consider the fact that scC(R−W (L)) < scC(R) < scA(R) = scA(R−W (L)).

The only alternatives whose scores are altered by the manipulative moves of the members of W

are B and C. Then scD(R) = scD(R−W (L)) = scA(R−W (L)) = scA(R), and F must break a

tie at R.
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