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Abstract

One of the goals of Artificial Intelligence is to create autonomous software agents
which exhibit social intelligence, i.e are capable to act as a group member in various
groups and, in particular, to participate in group decision making. For such agents
to be programmed we need protocols which are formalizable. In this paper we are
suggesting such a protocol based on one of the most famous and controversial social
choice rules - Dodgson’s rule. We prove that the problem of implementation of this
protocol is fixed parameter tractable.
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1 Introduction

Wooldridge and Jennings [19] start their landmark paper with the following descriptions
of a hypothetical event that occur sometime in the future:

“The key air-traffic control systems in the country of Ruritania suddenly fail,
due to freak weather conditions. Fortunately, computerised air-traffic control
systems in neighbouring countries negotiate between themselves to track and
deal with all affected flights, and the potentially disastrous situation passes
without major incident.”

To make this a reality we must teach autonomous software agents to achieve a consensus.
Do we know what it is and what are the algorithms of achieving it? Let us look at
historical examples of making decisions by consensus.

Quakers or The Religious Society of Friends, which is a Christian religious denomina-
tion founded in England in the 17th century [1], believed that on every issue there is a
God’s will and that the society as a whole is better positioned to sense it than a single indi-
vidual. When faced by the necessity of taking a business decision, they would gather at a
“Meeting for Worship with a Concern for Business”, or simply “Business Meeting”.Each
member of the meeting was expected to listen to the voice of God within themselves
and, if called, to contribute to the group their opinion for reflection and consideration.
A decision is reached when the Meeting, as a whole, feels that the “way forward” has
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been discerned (also called “coming to unity”) or there is a consensus. This is known as
Quakers’ method of making a decision-by-consensus.

In the modern society some decisions can be made by consensus only. Complex prob-
lems of this kind are numerous: global warming, toxic chemicals in the environment,
fighting terrorism, deforestation, overfishing and so on. Each involves a certain public
good and externalities (effects that one agent’s actions have on an otherwise unrelated
agent). There are currently no good mechanisms for efficient and direct aggregation of
preferences in such domains; rather we have to rely on political parties and a few non-
governmental organizations to act on our behalf. Due to the largely atheistic nature of
modern society, the Quakers’ method is not applicable. Yet still, some organisations like
the Internet Engineering Task Force (IETF) [4] or Wikipedia [2] claim to make decisions
by consensus or rough consensus. To date, no protocols of consensus decision making
have been published: perhaps from fear of having it manipulated (IETF) or due a non-
formalisable nature of such protocols. All we know is that in each case, building consensus
is a process in the course of which agents who initially disagreed with the final decision
are persuaded to accept it, perhaps with some compromise.

We believe that some kind of compromise (or compensation) is always involved in
consensus building, and any consensus comes at a price. In some cases, like church
meetings or elections of the Pope, preserved unity may be a sufficient compensation. In
other cases, like countries negotiating fishing quotes, monetary compensations could be
inevitable.

Modern social choice theory, following Kenneth Arrow, treats voting as a method
for aggregating diverse preferences and values. An earlier view, initiated by Marquis
de Condorcet, is that voting is a method for aggregating information. Voters’ opinions
differ because they make errors of judgment; absent these errors they would all agree
on the best choice. The goal is to design a voting rule that identifies the best choice
with highest probability. This approach is called maximum likelihood estimation and
it has been pursued by Peyton Young in papers [21, 20, 22]. The main idea of this
line of research is that there is a ‘correct’ ranking and that voters express opinions that
aggregately represent the correct opinion with some ‘noise’. Conitzer and Sandholm [9]
showed that several rules can be viewed as maximum likelihood estimators but others
cannot.

A slightly different approach was suggested by Dodgson1 (1832–1898). His approach
implicitly suggests that not individual voters but the society as a whole knows the “correct
answer” but the profile that results in the election is contaminated with some random
mistakes (e.g. mistakes in casting a ballot) and some voters deliberately acting irrationally
obstructing the electoral process.

Dodgson’s considered that, given the votes, the administrator is allowed to make a
minimal number of swaps of neighboring alternatives to obtain a profile for which a
Condorcet Winner exists, that is then declared the winner of the election. This approach
is based on two assumptions:

• If a Condorcet Winner exists, then the society has spoken unambiguously. In

1better known by the pen name Lewis Carroll
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consensus-decision-making terminology we may say that in this case there is a “rough
consensus” in the society [3, 4].

• A mininal change in a voter’s opinion is for the voter to swap in their linear order
two neighboring alternatives, ceteris paribus, and that, in general, the magnitude
of a change in opinion can be measured in the number of these minimal changes.

The implementation of Dodgson’s rule as it was envisaged by Dodgson himself is that the
administrator or an electoral committee should be allowed to make the smallest possible
number of such swaps so that the resulting profile has a Condorcet Winner.

It is perfectly reasonable for the administrator to be reluctant to swap someone’s first
and second preferences but more willing to swap someone’s fifth and sixth preferences
since the voter feels more strongly about the position of his best alternatives than he does
about the position of his fifth best alternative. So it is reasonable to assume that there
is a certain “cost” cij involved in swapping the ith and (i + 1)th preferences of the jth
voter. At the first glance it may seem reasonable to assume that this cost decreases as
i grows, i.e., c1j ≥ c2j ≥ . . . ≥ cmj ≥ . . .. However, this may not always be justified.
Imagine the situation when a voter classifies candidates into two large groups: acceptable
and not acceptable ones. She has ranking within each group too. For her, the movement
of candidates within each group will incur only a small cost while moving candidates from
one group to another will be costly.

Our first goal is to introduce the concept of a generalised Dodgson score relative to an
arbitrary cost function which is individual to the particular voter. We require, however,
that the cost function is anonymous, that is, voters with the same preference orders incur
identical costs. We claim that this protocol is an ideal tool for making decisions by
consensus. This is the first such formalised protocol that we know.

Our second goal is to dispel the stigma of exorbitant complexity associated with Dodg-
son’s rule. From the classical complexity point of view things look really bad (we discuss
this in the Section 3). However from the parameterised complexity point of view things
are not gloomy at all. Recently Fellows and Rosamond2 and Betzler, Guo and Nieder-
meier [5] showed that the problem Dodgson Winner is in FPT, if it is parameterised
by the score. The result of this paper is more general as we extend this result to the
Generalised Dodgson’s score.

Our third goal is to attract attention to Generalised Dodgson’s rule as a protocol for
achieving a consensus. As McCabe-Dansted showed [16, 17] for classical Dodgson’s rule;
with less that 25 alternatives and less than 100 voters, his algorithm finds the winner in
less than one tenth of a second in the worst case. We expect that similar results can be
obtained in the generalised case.

2 Preliminaries from Social Choice Theory

Let A be a finite set of alternatives which are under consideration by a group of agents
who need to choose the “best” alternative. We assume that the ith voter ranks all

2See the remark added in proof in [8]
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alternatives without ties and submits a ballot which contains a linear order Ri on A. The
sequence R = (R1, R2, . . . , Rn) of linear orders is called a profile. It contains all available
information, i.e. which voter submitted which ballot. This information is not always
available. Voters are often anonymous and in this case we only know how many votes of
each type were submitted. This information is contained in the voting situation which
corresponds to the profile R = (R1, . . . , Rn). This is a multiset V = V(R) on the set of
all linear orders L(A) on A, i.e. a mapping µ : L(A) → N such that, for each linear order
Q ∈ L(A), the value µ(Q) is the number of indices i for which Q = Ri. Of course, the
cardinality of this multiset

∑

Q∈L(A)
µ(Q) = n, the number of voters.

We define nxy to be the number of linear orders in R that rank x above y, i.e. nxy ≡
#{i | xRiy}. This information is stored in the matrix NR, where (NR)ab = nab. A function
WR : A×A → N given by WR(a, b) = nab −nba for all a, b ∈ A, will be called the weighted
majority relation on R. It is obviously skew symmetric, i.e. WR(a, b) = −WR(b, a) for all
a, b ∈ A. We note that the information which is contained in the voting situation V(R)
is sufficient to calculate WR. An arbitrary skew symmetric function W : A × A → N is
called a weighted tournament on A. So, given a profile R, the weighted majority relation
is a weighted tournament.

Profiles, voting situations and weighted tournaments are three levels of aggregation of
the original information contained in voting ballots.

The following lemma is obvious but useful.

Lemma 1. Let V1 and V2 be two voting situations and V1 ∪ V2 be their multiset union,
i.e. the multiset for which the multiplicity function is the sum of the multiplicity functions
of V1 and V2. Then WV1∪V2

= WV1
+ WV2

.

Many of the rules to determine the winner use the numbers

advR(a, b) = max(0, nab − nba) = (nab − nba)
+,

which will be called advantages. If a wins a pairwise simple majority contest against b,
then advR(a, b) shows by how many votes this contest is won. Note that advR(a, b) =
max(0, WR(a, b)) = WR(a, b)+, where WR is the weighted majority relation of R.

We will not write the subscript if it is clear which profile is under consideration. A
Condorcet Winner is an alternative a for which advR(b, a) = 0 for all b. If advR(b, a) > 0,
then, for a to win the pairwise contest against b we have to persuade at least

⌈

advR(b, a)

2

⌉

people to swap a and b in their linear orders. It might involve even more swaps of
neighboring alternatives since a and b may be far apart in some orders.

We will need the following lemma, the proof of which uses ideas from McGarvey [18].

Lemma 2. Let A = {a0, a1, . . . , am} and w1, . . . , wm be arbitrary integers which are either
all even or all odd. Then there exists a profile R on A of cardinality not greater than
w1 + . . . + wm such that for the weighted tournament WR associated with R we have
WR(a0, ai) = wi for all i = 1, . . . , m and WR(as, at) = 0, when (s, t) 6= (0, i).
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Proof. Suppose all wi’s are even. Then, for each i = 1, . . . , m, we add |wi/2| pairs of
linear orders. If wi > 0, then the linear orders in those pairs will be

a0 > ai > b1 > b2 > . . . > bm−1, bm−1 > bm−2 > . . . > b1 > a0 > ai,

where {b1, . . . , bm−1} = A \ {a0, ai}. If wi < 0, then a0 and ai in these orders should be
swapped. If all wi’s are odd, we firstly add a linear order

b1 > . . . > bp > a0 > c1 > . . . > cq,

where {b1, . . . , bp} = {ai ∈ A | wi < 0} and {c1, . . . , cq} = {aj ∈ A | wj > 0}. In light of
Lemma 1 this reduces the problem to the first case.

3 Dodgson’s Rule and Classical Complexity Theory

As Dodgson’s rule is anonymous we may have either a profile or a voting situation as
input. The protocol of Dodgson’s rule stipulates that initially the majority relation has
to be calculated and it has to be checked whether or not a Condorcet Winner exists. If
so, it is elected. If not, the protocol, for every alternative a ∈ A, calculates the score
Sc(a) defined to be the smallest possible number of swaps of neighboring alternatives in
the linear orders of the profile or the voting situation that makes a a Condorcet Winner.
The alternative with the smallest score is elected.

Classical complexity provides us with plenty of negative results about Dodgson’s rule.
Bartholdi, Tovey, and Trick [6], in their seminal paper “Voting Schemes for which It
Can Be Difficult to Tell Who Won the Election,” raised the issue of the computational
complexity of determining a winner. In sharp contrast to most other known voting rules,
Bartholdi et al. proved that Dodgson’s election protocol has the disturbing property that
it is NP-hard to determine whether a given candidate has won a given election (a problem
they called Dodgson Winner), and that it is NP-hard even to determine whether
a given candidate has tied-or-defeated another given candidate (a problem they called
Dodgson Ranking). E. Hemaspaandra, L. Hemaspaandra, and J. Rothe [15] proved
that Dodgson Winner and Dodgson Ranking are complete for parallel access to NP
establishing its complexity exactly. One of the most interesting problems is given below.

The problem: Dodgson’s Score

Instance: A set of alternatives A, an alternative a ∈ A, a multiset of linear
orders V and a nonnegative integer k.
Question: Does a Dodgson’s score of a satisfy Sc(a) ≤ k?

We need to consider multisets here since several voters might have identical opinions.
Bartoldi et al. [6] proved that Dodgson Score is NP-complete by reducing it to Exact
Cover by 3-Sets (X3C), known to be NP-complete [13]. McCabe-Dansted proved that
Dodgson Score does not admit a Polynomial Time Approximation Scheme (PTAS),
unless P = NP [16, 17].

5



Further investigation by methods of parameterised complexity [10] has revealed that
things are not as bad as they seemed. Two important parameters may be small and
are of interest to parameterised complexity, namely, the number of alternatives m, and
the threshold k, hence we have two possible parameterised variants of Dodgson Score.
Both parametrised problems have been shown to be in FPT ([16, 5, 8]. McCabe-Dansted
showed [16] that for m ≤ 25 and n ≤ 100 the time required to calculate Dodgson’s winner
is less than than 1/10 of a second. This makes Dodgson’s rule feasible as a protocol
computing consensus since consensus.

4 Generalised Dodgson Rule and Its Parameterised

Complexity

Now we will deal with monetary compensations. As in the standard Dodgson’s rule,
the administrator calculates the cost of making an alternative a a Condorcet Winner.
The voters reveal their costs and the problem for the administrator is to decide which
alternative is cheaper to make a Condorcet Winner. We will assume that voters with
identical preferences bear the same costs. Since voters remain anonymous even after
revealing their costs, we call this an anonymous cost structure.

Mathematically, this leads us to introducing a cost function c : L(A)× A → N ∪ {∞}
such that c(Q, x) is the cost for the voter with preferences Q of swapping the alternative
x with the one just above it (and c(Q, x) = ∞ if x is the top alternative already).

Given a set of cost functions c, we can introduce the concept of a generalised score for
each of the alternatives denoting the minimal cost of making an alternative a a Condorcet
Winner as Sc(R, c, a) or Sc(V, c, a).

The problem: Generalised Dodgson’s Score

Instance: A set of alternatives A, a set of voters V a profile R of V on A, a
cost function c and an alternative a ∈ A.

Parameter: k (representing the threshold cost)

Question: Is it true that Sc(R, c, a) ≤ k?

We would like to show that this problem is fixed parameter tractable. However we
would like to do more than that and give information on the degree of FPT-ness of the
problem. We need the following definition.

Definition 1. A parameterised language L is kernelizable if there is a parametric trans-
formation of L to itself that satisfies:

1. the running time of the transformation of (x, k) into (x′, k′) (the kernel) is bounded
by a polynomial q(n, k), where n = |x|.

2. k′ ≤ k, and
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3. |x′| ≤ h(k), where h is an arbitrary function.

So that in fact this is a polynomial time transformation of L to itself, considered
classically, although with the additional structure of a parametric reduction. It is known
that a parameterised language L is fixed-parameter tractable if and only if it is kernelisable
[12]. The size h(k) of the kernel (x′, k′) is a very important parameter of a kernelisable
parameterised language. If h(k) is a polynomial, we say that the problem has a polynomial
kernel, and if h(k) = eO(k), we say that it has a simply exponential kernel.

Theorem 1. Generalised Dodgson Score has a kernel of size eO(k2).

Proof. Let (A, V,R, c, a) be an instance of the problem and let V be the voting situation
corresponding to R. We then can calculate the majority relation and identify the set of
candidates X from A who win over a in pairwise contests. This can be done in polynomial
time. Since c(Q, a) ≥ 1 for all i, we may assume that |X| ≤ k, otherwise (A, V,R, c, a) is
a ‘no’-instance. For each problem candidate x ∈ X we calculate

gap(x) =

⌈

advR(x, a)

2

⌉

.

This is how many voters have to be persuaded to vote for a so that a wins (or draws) a
simple majority contest against x.

Let σ(Q) be the linear order which is obtained as a result of a swap of a one position
upwards (which is not defined when a is already the top alternative). Given Q ∈ L(A)
and a cost function c, let ℓr(Q, c, a) =

∑r−1
i=0 c(σi(Q), a). This is the cost of moving the

alternative a up r times in a linear order of type Q with the cost function c. Let us
define a couple of useful things. Firstly, let L(a, Q) be the lower contour set of a in Q, i.e.
L(a, Q) = {x ∈ A | aQx}. Also let pos(a, Q) = |A| − |L(a, Q)| be the position of a in Q.
Let us also set Xi = X ∩ L(a, σi(Q)). Then the footprint of a in Q will be the sequence
of pairs (ℓ0(Q, c, a), X0), . . . , (ℓr(Q, c, a), Xr), where r is the maximum value such that
ℓr(Q, c, a) ≤ k.

Since X ⊇ X0 ⊇ X1 ⊇ . . . ⊇ Xr, we have |X0| ≤ k and ℓr(Q, c, a) ≤ k. Therefore
there are at most 22k2

footprints. Denote the set of all footrpints as F . We can now
calculate the following multiset corresponding to the profile R = (R1, . . . , Rn). This is a
multiset F = (F, µ) on the set of all footprints F , with the multiplicity function µ : F → N

such that, for each footprint f ∈ F the value µ(f) is the number of indices i for which
a has footprint f in Ri. Of course, the cardinality of F is n = |V |. This multiset can
be computed in polynomial time. Now we construct another multiset G = (F, ν), where
ν(f) = min(µ(f), k). This multiset has cardinality not greater than k22k2

. This multiset
determines a voting situation which we will denote V1. To construct it, for any footprint
f , we take any ν(f) linear orders with that footprint.

Define Ā = X ∪ {a} and let Q̄ ∈ L(Ā) be the restriction of Q on Ā. Switching from
A to Ā we make some alternatives invisible but their existence will be encoded in the
new cost function c̄. Let pos(Q̄, a) = j and pos(Q̄, b) = j − 1, i.e. they are neighbours
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in Q̄ and b is ranked directly above a, but pos(Q, a) = i and pos(Q, b) = i − h for some
positive integer h. Then we set c̄(Q̄, a) = ℓh(Q, c, a). Restricting all linear orders of V1 to
Ā we obtain a voting situation V̄∞. The size of this voting situation depends now only on
k but in the process of obtaining this voting situation we discarded several linear orders
and the advantages advV̄1

(x, a) for x ∈ X are now different from advV(x, a). This has to
be corrected.

As the cardinality of V̄1 is less that k22k2

we have advV̄(x, a) ≤ k22k2

. By Lemma 2
we need to add to V̄1 at most another k222k2

linear orders so that the resulting voting
situation V2 gives us

advV2
(x, a) = advV(x, a)

for all x ∈ X. For every new linear order Q̄ added we set c̄(Q̄, a) = k + 1. This concludes
the construction of the kernel. Indeed, the size of the constructed voting situation is
bounded by a function of k only and it is is exactly the same to decide if Sc(R, c, a) ≤ k
or Sc(V2, c̄, a) ≤ k.

5 Conclusion

The heart of consensus is a cooperative intent, where the members are willing to work
together to find a solution that meets the need of the group. The cooperative nature of
search for consensus creates a different mindset from the competitive mindset of voting.
In particular, the society might wish to compensate those members of the society whose
preferences are far from the collective decision that results from using the agreed protocol.
We suggested such protocol and the method of compensation associated with it. We
showed that the protocol is feasible for groups of relatively small size. We believe that
this is the first such formalised protocol.
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