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Abstract

Based on the paper of Arnol’d [1] on the problems of Mathieu type,
we suggest a modified Feynmann diagram technique to assist in solving
problems of the form Aεy = (I + εV )−1A0y = λy. We then use this
method to calculate eigenvalues and eigenfunctions to the polar problem,

−d2y

dx2
= λ(1 + ε cos x)y,

with the quasiperiodic boundary condition on [0, 2π].

1 Introduction

The finding of approximate solutions to additive perturbation problems, where
the perturbed operator Aε has the form Aε = A0 + εV , is a process used widely
in modern physics, see for instance [6]. In [1], Arnol’d examined problems of
Mathieu type, y′′ + (λ − ε cosx)y = 0, using analytic perturbation technique in
the modified form of Feynmann diagrams. Arnol’d calculated the eigenvalues
and eigenfunctions by applying the Feynmann diagram technique to the analytic
perturbation procedure, with eigenvalues and eigenfunctions of the perturbed
operator determined from those of the unperturbed operator by the power ex-
pansion on εl, given by

λε
s = λ0

s + εα1
s + ε2α2

s + · · · and |sε〉 = |s0〉 + ε|sε
1〉 + ε2|sε

2〉 + · · · (1)

respectively. The diagram technique is useful in revealing the combinatorial
nature of the terms in the expansion.

The standard diagram technique is not applicable to problems with multi-
plicative perturbations. For instance, in the polar problem with positive periodic
density,

−y′′ = λ(1 + ε cosx)y where 0 < ε < 1, (2)
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the perturbed operators have the form Aε = (I + εV )−1A0 with (I + εV ),
depending on the application, being the density or refraction coefficient. The
standard diagram technique is not applicable to this problem, because the terms
in the expansion involve not powers of ε alone, but the product of it with
the spectral parameter, namely ελ.We suggest three different modification to
Arnol’d’s technique to treat (2) with the analytic perturbation approach.

2 Perturbation of metric, Riesz integral, and
the plan of the proof

Consider the abstract Hilbert space H0 with the inner product 〈∗|∗〉0, and the
associated Hilbert space Hε with the inner product defined as

〈∗|∗〉ε = 〈(I + εV )∗|∗〉0.
Here ρε = I + εV is a bounded, self-adjoint, strictly positive operator. Suppose
that, in H0, we have the positive self-adjoint operator A0 with discrete spectrum
{λ0

s} (where (A0)−1 is compact in H0). Then in Hε we have the associated
operator Aε = (I + εV )−1A0, so that 〈x, Aεy〉ε = 〈x, A0y〉0.

Assuming that the eigenvalue-eigenfunction pairs are(λ0
s, |s0〉), we represent

the bounded, self-adjoint, positive “density” ρε = [I + εV ] as

I + εV = I + ε
∑

r

∑
t

vrt|r0〉〈t0|

with the perturbation parameter ε. Hereafter we define the perturbed operator
Aε as above, and denote by (λε

s, |sε〉) its eigenvalue-eigenfunction pairs.
The spectrum of Aε is discrete; to find the values of (λε

s, |sε〉) we write
down the resolvent operator, Rε

λ = [Aε − λI]−1, as a sort of Neumann series of
terms composed of products of the unperturbed resolvent R0

λ, the perturbation
operator V , and powers of λ and ε. Using the Riesz integral,

−1
2πi

∮
γs

Rε
λdλ = P ε

s . (3)

see [4], we can find the spectral projection of Aε in the form of the corresponding
Neumann-type series.

For simple eigenvalues of A0 and small ε the corresponding eigenvalues λε
s

are simple as well, and λε
s is the only eigenvalue of Aε in a sufficiently small disc

Dε
s centred at λ0

s. The corresponding spectral projection P ε
s can be calculated

as the residue of Rε
λ or, otherwise, as a sum of residues of the Neumann series

for the perturbed resolvent.
In each term of the Neumann series we decompose R0

λ = (A0 − λI)−1 as
a sum of two terms, one analytic and the other non-analytic, within Dε

s: the
decomposition is

R0
λ =

P 0
s

(λ0
s − λ)

+ Q0
s, where Q0

s =
∑
s′ �=s

P 0
s′

(λ0
s′ − λ)

.
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We make sure that the perturbed eigenvalue, for ε sufficiently small, lies in
Dε

s. The residues of successive terms of the Neumann series are represented as
products of the form

T 0
s,1V T 0

s,2V...T 0
s,n, with T 0

s,n ∈
{

P 0
s , Q0

s,
d

dλ
Q0

s, ...

}

evaluated at λ = λ0
s. We shall write (

(k)

Σn
m) as the sum of all such sequences with

n − m P 0
s terms and with a total derivative order of k so that, in particular,

Σ̇n
m when k = 1 refers to the sum of sequences with one d

dλQ0
s term. We shall

also define λ0
s

λ0
s′−λ0

s
:= µs

s′ where s′ �= s. The terms, which arise in this series,
can be represented by diagrams modified from those of Feynmann; we can then
use other similar diagrams to simplify calculation of the terms involved in the
trace. We can also calculate the perturbed eigenfunctions.

In the appendix, an alternative proof of the main result is given, based on
comparison of terms with equal powers of ε.

3 Preliminary Results

Before we approach the main result, we need to verify for the polar problem
two important details. The first is that, under certain conditions on V , we can
represent the resolvent of the perturbed operator in terms of the resolvent of
the unperturbed operator within the disc Dε

s with δDε
s = γs while excluding the

eigenvalue λ0
s. The second is to show that the eigenvalue λε

s lies within Dε
s for

all sufficiently small ε. If we assume that the eigenvalue λ0
s of the unperturbed

operator is simple, we will have this property preserved by the perturbation.
In this paper we will simply perform the calculations with terms up to ε2.

The structure of the following modified Feynmann diagram will be clear from
the analysis of the first two terms of the expansion.

Lemma 1 Let Rε
λ be the resolvent of the operator Aε so that, in particular,

R0
λ is the resolvent of the operator A0. If the disc Dε

s centred at λ0
s is chosen

such that ε|λ|
|λ0

s−λ|‖V ‖
∣∣∣∣
δDε

s

< 1 then the resolvent of the perturbed operator Aε is

represented in the boundary δDε
s by the uniformly convergent series

Rε
λ =

∞∑
r=0

εrλr(R0
λV )rR0

λ(I + εV ). (4)

Proof By definition Rε
λ = (Aε − λI)−1. Note that Aε = (I + εV )−1A0; by

simple substitution and rearranging of

Rε
λ = (A0 − λI − ελV )−1(I + εV ),

using (A0 − λI − ελV )−1 = (I − εR0
λV )−1(A0 − λI)−1, we obtain

Rε
λ = (I − ελR0

λV )−1(A0 − λI)−1(I + εV ) = (I − ελR0
λV )−1R0

λ(I + εV ).
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On the boundary δDε
s the nearest eigenvalue of A0 is λ0

s, hence

|ελR0
λV | ≤ |ε| |λ|‖V ‖

|λ0
s − λ| < 1,

and so (I − ελR0
λV )−1 is invertible. From the condition ε|λ|

|λ0
s−λ|‖V ‖

∣∣∣∣
δDε

s

< 1 we

see that the series

(I − ελR0
λV )−1 =

∞∑
r=0

εrλr(R0
λV )r.

is convergent on δDε
s. �

Remark: It is sufficient to take Dε
s =

{
λ : |λ − λ0

s| < 1
3min

s′ �=s
|λ0

s′ − λ0
s|

}
.

For our purposes we take terms up to O(ε3), which gives us

Rε
λ = R0

λ(I + εV ) + ελR0
λV R0

λ(I + εV ) + ε2λ2R0
λV R0

λV R0
λ + O(ε3). (5)

Lemma 2 If λ0
s is a simple eigenvalue of the unperturbed operator A0 then λε

s

is a simple eigenvalue of the perturbed operator Aε.

Proof For the proof of this we may refer to Gohberg [5]; however the result
will be obtained independently within the proof of the next theorem. �

We will also make use of calculating by residues of operator functions on
a simple circular contour D = {|z − z0| < δ} with f analytic in D with the
kernel (z − z0)−n−1. See, for instance, the corresponding calculation for scalar
functions in [2].

4 General Solution

We now use the previous results to prove the central statement of this paper.
Analogously to the additive case, the multiplicative perturbation gives rise to a
series of ε-powers whose coefficients are determined by the unperturbed systems
eigenvalues and eigenfunctions. Again, we assume that the studied eigenvalue
is simple and restrict our calculations to terms with ε power no greater than ε2.

Theorem 1 Assume that λ0
s is a simple eigenvalue of A0 with eigenfunction

|s0〉. It follows that the eigenvalue λε
s and the eigenfunction |sε〉 of Aε arising

from the pair λ0
s, |s0〉 are analytic functions of ε, and are represented by Taylor

expansions in powers of ε (|ε| < 1). In particular

λε
s = λ0

s + ελ̃1
s + ε2λ̃2

s + O(ε3) |sε〉 = |s0〉 + ε|sε
1〉 + ε2|sε

2〉 + O(ε3), (6)
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where 〈s0, sε〉 = 1 is assumed. The ε-power coefficients are given by

λ̃1
s = −λ0

svss, λ̃2
s = λ0

s

(
v2

ss −
∑
s′ �=s

(
µs

s′vss′vs′s

))
, |sε

1〉 =
∑
s′ �=s

µs
s′vs′s|s′0〉,

and |sε
2〉 =

∑
s′ �=s

(( ∑
s′′ �=s

µs
s′µs

s′′vs′s′′vs′′s

)
− µs

s′(µs
s′ + 1)vs′svss

)
|s′0〉.

Proof From Lemma 1 and (3) one can see that Rε
λ is an analytic function of

ε, for small ε. Then (3) gives the projection in the form of a Taylor series; in
particular we have

P ε
s =

−1
2πi

∮
γs

R0
λρε + ελR0

λV R0
λρε + ε2λ2R0

λV R0
λV R0

λdλ + O(ε3). (7)

We now consider the three integrals formed by integrating each term separately.
Because of the independence of ρε from λ the first integral gives

−1
2πi

∮
γs

R0
λ(I + εV )dλ =

(−1
2πi

∮
γs

R0
λdλ

)
(I + εV ) = P 0

s (I + εV ).

To calculate the second integral, note that

R0
λ =

∑
r

P 0
r

λ0
r − λ

=
P 0

s

λ0
s − λ

+ Q0
s, (8)

so that we have

−ε

2πi

∮
γs

λR0
λV R0

λρεdλ =
( −ε

2πi

∮
γs

λ

(
P 0

s

λ0
s − λ

+ Q0
s

)
V

(
P 0

s

λ0
s − λ

+ Q0
s

)
dλ

)
ρε.

On expanding these brackets we collect the terms which have the same power
of λ0

s − λ in the denominator and, noting that λQ0
sV Q0

s is analytic over γs, we
get

−ε

2πi

∮
γs

λP 0
s V P 0

s

(λ0
s − λ)2

dλ = −εP 0
s V P 0

s ,
−ε

2πi

∮
γs

λQ0
sV Q0

sdλ = 0, and

−ε

2πi

∮
γs

λ(P 0
s V Q0

s + Q0
sV P 0

s )
λ0

s − λ
dλ = ελ0

s(P
0
s V Q0

s + Q0
sV P 0

s )
∣∣∣∣
λ=λ0

s

.

Hence the second term is

−ε

2πi

∮
γs

λR0
λV R0

λ(I + εV )dλ = ε(λ0
sΣ

2
1 − Σ2

0)(I + εV ),

where (
(k)

Σn
m) is the sum of all terms arising from the expansion of the integral

with ε-power n− 1, with n−m P 0
s terms and with a total derivative order of k.
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The last integral is the most complicated but the same arguments generally
apply; the only additional factor to take into account appears from the derivative
of Q0

s with respect to λ. For the final integral we have

−ε2

2πi

∮
γs

λ2R0
λV R0

λV R0
λdλ = ε2(Σ3

0 − 2λ0
sΣ

3
1 + (λ0

s)
2(Σ3

2 − Σ̇3
1)).

We now have the value for the integral on the contour γs = δDε
s. This gives

an expression of P ε
s in terms of the perturbation and the unperturbed spectral

data, which is given by

P ε
s = (P 0

s +ε(λ0
sΣ

2
1−Σ2

0)+ε2(Σ3
0−2λ0

sΣ
3
1+(λ0

s)
2(Σ3

2−Σ̇3
1)))(I+εV )+O(ε3). (9)

Remark: For a proof, independent from [5], of Lemma 2, note that we have P ε
s

represented in the form P 0
s + εP̂ with a bounded P̂ . So we can say dim(P ε

s ) =
dim(P 0

s + εP̂ ) −→
ε→0

dim(P 0
s ). Hence dim(P ε

s ) = 1 for small ε.
We can now find the eigenvalues of the perturbed operator: it is easy to see
that Tr(P ε

s Aε) = λε
s. This gives (up to O(ε3) terms)

λε
s = Tr[(P 0

s + ε(λ0
sΣ

2
1 − Σ2

0) + ε2(Σ3
0 − 2λ0

sΣ
3
1 + (λ0

s)
2(Σ3

2 − Σ̇3
1)))ρερ

−1
ε A0].

To decide which elements contribute to the trace first note that, as A0 is a
diagonal operator then diagonal terms will only appear in terms in the sum in-
volving P 0

s , P 0
s V P 0

s , P 0
s V P 0

s V P 0
s , P 0

s V Q0
sV P 0

s , P 0
s V Q̇0

sV P 0
s , and Q0

sV P 0
s V Q0

s.
Expanding out and taking the trace of each term gives us

λε
s = λ0

s − ελ0
svss + ε2λ0

s

(
v2

ss −
∑
s′ �=s

(µs
s′vss′vs′s)

)
.

If we set λ̃1
s = −λ0

svss and λ̃2
s = λ0

s(v2
ss −

∑
s′ �=s(µ

s
s′vss′vs′s)), then we have the

desired formula for the eigenvalues λε
s.

Because we can scale eigenfunctions, we assume that 〈s0, sε〉 = 1 even though
this means that we drop normality of the calculated perturbed eigenfunctions;
normalization can be done after the calculations if it is desired. We calculate
the perturbed eigenfunctions we wish to solve up to ε3:

|sε〉 = |s0〉 + ε|sε
1〉 + ε2|sε

2〉 + O(ε3).

From (9) and the definition of P ε
s (P ε

s |sε〉 = |sε〉) we compare the coefficients
for each power of ε on both sides of

(P 0
s + εP̃ (1)

s + ε2P̃ (2)
s )(I + εV )(|s0〉 + ε|sε

1〉 + ε2|sε
2〉) = |s0〉 + ε|sε

1〉 + ε2|sε
2〉

and find the desired expressions for |sε
1〉 and |sε

2〉.The coefficient in front of ε0 = 1
is already known from our assumptions, and is confirmed here. The coefficient
in front of ε1 gives us

P 0
s V |s0〉 + P̃ (1)

s |s0〉 + P 0
s |sε

1〉 = P 0
s V |s0〉 + λ0

sΣ
2
1|s0〉 − Σ2

0|s0〉 + P 0
s |sε

1〉 = |sε
1〉,
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which implies ∑
s′ �=s

µs
s′vs′s|s′0〉 = |sε

1〉.

Comparing the coefficients in front of ε2 gives us, with Hm
s = (I − mP 0

s ),

((λ0
s)

2(Σ3
2 − Σ̇3

1) + λ0
sΣ

2
1V H2

s − Σ2
0V H1

s )|s0〉 + (P 0
s V H1

s + λ0
sΣ

2
1)|sε

1〉 = H1
s |sε

2〉,

which implies∑
s′,s′′ �=s

µs
s′µs

s′′vs′s′′vs′′s|s′0〉 −
∑
s′ �=s

(µs
s′ + 1)µs

s′vs′svss|s′0〉 = |sε
2〉.

So we have calculated the associated eigenfunctions up to O(ε3). �

Note that this proof holds only for simple eigenvalues, because we use the values
of the eigenvalues during the evaluation of the eigenfunctions. In the case of
multiple eigenvalues, the spectral projections P ε

s onto the spectral subspaces
corresponding to the eigenvalues of the perturbed operator Aε inside Dε

s can be
obtained using the method listed previously. The eigenvalues are then found
from solutions of the corresponding secular equation for P ε

s Aε.

5 Modified Diagram Techniques

The coefficients in front of higher powers of ε are more complicated. To obtain
them we need to develop a corresponding modified diagram technique. We
describe below three modifications of the Feynmann-Arnol’d diagram technique,
which helps to label and calculate all terms appearing from the residue of the
Riesz integral, which have the form

−εl−1

2πi

∮
γs

λl−1

((
P 0

s

λ0
s − λ

+ Q0
s

)
V

)l−1(
P 0

s

λ0
s − λ

+ Q0
s

)
dλ. (10)

We base the first diagram technique on two observations. The first comes
from the decomposition of R0

s into two terms: one, P 0
s

λ0
s−λ , corresponding to the

eigenvalue in the disc Dε
s; the other, Q0

s corresponds to all of the eigenvalues
outside of this disc. The second is that the products alternate between R0

λ terms
and V terms. Consider the integral of an arbitrary term from (7), namely (10).

Enumerate the brackets in the product by the index n. For fixed s we let
P 0

s

λ0
s−λ := Pn and Q0

s := Qn for n = 1, . . . , l, so each of the products on expanding
this term is of the form T1V T2V · · ·V Tl where Tn ∈ {Pn, Qn}. For each of
these Pn and Qn, let us create a vertex and label it Pn or Qn as appropriate.
Between each ordered pair of vertices of the form (Tn, Tn + 1), with 1 ≤ n < l
and Tn ∈ {Pn, Qn}, we make a directed edge from Tn to Tn+1. These edges
represent the V terms between Tn and Tn+1 in the product. It is easy to see
that there will be one line for every product on expansion of the integral of the
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arbitrary term. For example, suppose l = 4. We are interested in all products
from the expansion of

(P1 + Q1)V (P2 + Q2)V (P3 + Q3)V (P4 + Q4).

P1 P2 P3 P4

Q1 Q2 Q3 Q4

Figure 1: Modified Feynmann-Arnol’d graph, showing all terms that can be
formed by expansion of the term (R0

λV )l−1R0
λ for the case l = 4. Each term

corresponds to one of the directed paths in this graph.

Consider the bold line in the diagram: this corresponds to the product
Q1V P2V P3V Q4, and to the term

−ε3 1
1!

(λ3Q0
sV P 0

s V P 0
s V Q0

s)
′
∣∣∣∣
λ=λ0

s

from the integral given earlier. Note that this term differs from the correspond-
ing term in Arnol’d’s case by the factor λ3.

Note that we will end up with the derivative of a finite product of functions
of λ. From the generalization of Leibniz rule to several functions, see [9] for
example, we know that

(λl−1T1(λ)V · · ·V Tl(λ))(k) =
∑

�
r kr=k

k!(l − 1)!λl−1−k0T
(k1)
1 V · · ·V T

(kl)
l

(l − 1 − k0)!k1! · · · kl!
. (11)

Setting k = l − q − 1, because there are l − q Pn-terms in the product and
the integral from (10) is around a pole of order l − q, will give us the correct
derivative order corresponding to the integral.

Further modification of Arnol’d’s diagram technique comes from the sum of
the terms due to the generalized Leibniz rule. Again the V terms correspond
to the diagram’s edges and the vertices will represent the terms in the decom-
position of R0

λ; however, instead of one vertex for each Q0
s term we will have

a set of l − q vertices. The P 0
s terms will still be represented by a set of one

vertex. Note that there are as many vertices in each set as there are possible
derivatives of that term. Let us write Un for the set of vertices corresponding
to the nth P 0

s or Q0
s term in the product. We label the vertices by the integers

0 ≤ k < |Un|, and say that the label of a vertex v is k(v).
To construct the corresponding diagram, we take the sequence T1V · · ·V Tl

as before, the appropriate sets of vertices Un for each of the Tn as detailed
above. We add all possible edges between Un and Un+1. It is trivial to show
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that a path v1, v2, . . . , vl with vn ∈ Un for which

l∑
n=1

k(vn) ≤ l − q − 1 (12)

corresponds to a term arising from (11). Once we know the value of the sum from
(12), we determine the appropriate derivative of λl−1 which gives the complete
expression of the term. Note that, in the Arnol’d case, only a path v1, v2, . . . , vl

with vn ∈ Un for which
l∑

n=1

k(vn) = l − q − 1 (13)

will correspond to a term arising from the Arnol’d analogue of (11).
For example, for the same product from the first diagram, Q1V P2V P3V Q4,

we have l = 4 and q = 2, so the order of the derivative of this term is l−q−1 = 1.
Hence we are interested in the expansion of (λ3Q0

sV P 0
s V P 0

s V Q0
s)

′. From the
diagram, we see that the possible terms are

3λ2Q0
sV P 0

s V P 0
s V Q0

s, λ3Q̇0
sV P 0

s V P 0
s V Q0

s, and λ3Q0
sV P 0

s V P 0
s V Q̇0

s.

0 0 0 0

1 1

Figure 2: Modification of the Feynmann-Arnol’d diagram to label all terms that
appear in the expansion of (λ3Q0

sV P 0
s V P 0

s V Q0
s)

′. The bold line represents the
product λ3Q0

sV P 0
s V P 0

s V Q̇0
s.

The third diagram technique is designed to aid in the calculation of the
eigenvalues of Aε. To calculate the eigenvalues we have made use of the trace, so
we must make sure that we do not include terms not appearing on the diagonal.
To do so, we modify the first diagram. For all 1 ≤ n < l we create a set of
min(n+1, l−1) vertices Un, and we create a set Ul of two vertices. Each vertex
in Un is labelled s

(k)
n for 0 ≤ k < |Un|. Each v ∈ Un represents the space

generated by the eigenvalue |s(k),0〉 with s(k) �= s(j) when k �= j.
The edges once again correspond to the V operators appearing in the prod-

uct. For 1 ≤ n < l, we include all directed edges from s
(k)
n to s

(j)
n+1.

This diagram includes paths which do not contribute to the trace; however,
the following three conditions collect all those paths which contribute to the
trace:

• every path must contain at least one vertex s
(km)
m with 1 ≤ m ≤ l and

km = 0,

• k1 = kl, and
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• for all 1 < m ≤ l, km ≤ 1 + max{km′ : m′ < m}.
To calculate the trace from this diagram, we take one of the paths with

the above conditions. The term represented by this path is obtained by the
following three rules: a vertex labelled sn contributes a factor of P 0

s ; a vertex
labelled s

(k)
n with k �= 0 contributes a factor of

∑
s(k) �=s,...,s(k−1)

(mn)!P 0
s(k)

(λ0
s(k) − λ0

s)mn+1

if Qn corresponds to (Q0
s)

(mn); and an edge labelled vs(k),s(j) contributes a factor
of vs(k),s(j) |s(k)0〉〈s(j)0|.By proceeding along the path from s

(k1)
1 to s

(kl)
l use

these rules upon every vertex and edge included in the path to obtain their
contributing factor. The product of all these factors, along with the appropriate
coefficient, gives the trace element represented by this path.

For instance, consider the product ε3(λ0
s)

3P 0
s V Q0

sV Q̇0
sV P 0

s , which we obtain
from using the appropriate first and second diagrams. One of the paths arising
from this term’s contribution to the trace has vertices labelled s1, s′2, s′′3 and s4,
where s′ �= s and s′′ �= s, s′. On this path, the first and last vertex contribute
P 0

s , the second contributes
∑

s′ �=s
P 0

s′
λ0

s′−λ0
s

and the third
∑

s′′ �=s,s′
P 0

s′′
(λ0

s′′−λ0
s)2

. The

edges contribute vss′ |s0〉〈s′0|, vs′s′′ |s′0〉〈s′′0|, and vs′′s|s′′0〉〈s0| respectively. The
coefficient for this term is ε3(λ0

s)
3. Also, because we multiply the operator

product at the end by A0 to get the eigenvalue, we need to multiply by λ0
s

because the last vertex in this path corresponds to P 0
s . Upon taking the trace

of the result, we get

ε3
∑
s′ �=s

∑
s′′ �=s,s′

(λ0
s)

4vss′vs′s′′vs′′s

(λ0
s′ − λ0

s)(λ0
s′′ − λ0

s)2
= ε3λ0

s

∑
s′ �=s

∑
s′′ �=s,s′

vss′vs′s′′vs′′sµ
s
s′(µs

s′′)2,

which denotes this term’s contribution to the trace. Note that this diagram
functions independently of λ, and so can be applied the Arnol’d case as well
(although with different coefficients).

s

s′

s′′

1 2 3 4

Figure 3: Example of the modified Feynmann-Arnol’d diagram for calculation
of the eigenvalue λε

s via the trace of P ε
s Aε.
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6 Application to the Polar Problem

The spectral problem for the polar equation with periodic density,

−y′′ = λ(1 + ε cosx)y, 0 < ε < 1, and −∞ < x < ∞, (14)

is reduced in the standard way, see [1], to the regular quasiperiodic Sturm-
Liouville problem

−y′′ = λ(1 + ε cosx)y, y

∣∣∣∣
x=2π

= Θy

∣∣∣∣
x=0

, y′
∣∣∣∣
x=2π

= Θy′
∣∣∣∣
x=0

, (15)

with 0 < ε < 1, Θ = eiκ, and 0 ≤ κ ≤ 2π. The spectral bands of the periodic
problem (14) are obtained as trajectories λs(κ) for 0 ≤ κ ≤ 2π. We obtain
λε

s based on the perturbation technique developed in the previous section. The
value of the unperturbed eigenvalues and eigenfunctions fill the role of the case
ε = 0, namely

λ0
s =

(
s − κ

2π

)2

and y0
s =

1√
2π

e−i(s− κ
2π )x, (16)

where s ∈ Z.

Theorem 2 The system (15) has the eigenvalues λε
s and eigenfunctions yε

s with

λε
s =

(
s − κ

2π

)2

+ ε2 (s − κ
2π )4

8(s − κ
2π )2 − 2

+ O(ε3) and

yε
s =

e−i(s− κ
2π )x

√
2π

(
1 +

ε

2
(β1 + β−1) +

ε2

4
(β2 + β−2)

)
+ O(ε3)

when the unperturbed eigenvalues are simple and where

βt = e−itx
t∏

w=sgn(t)

αw and αw =
(s − κ

2π )2

w(2s + w − κ
π )

.

Proof Consider V = cosx. If |r − t| = 1, then vrt = 1
2 ; otherwise vrt = 0.

Therefore, from simple substitution into the results from the general theorem
we have

λ̃1
s = 0 and λ̃2

s =
(s − κ

2π )4

8(s − κ
2π )2 − 2

for the respective coefficients of the ε and ε2 correction terms for the eigenvalue
λε

s, so that λε
s = λ0

s +ε2λ̃2
s. The corresponding coefficients of the ε and ε2 terms

of the eigenfunctions are

y(1)
s =

e−i(s− κ
2π )x

2
√

2π

(
(s − κ

2π )2e−ix

2s + 1 − κ
2π

− (s − κ
2π )2e−ix

2s − 1 − κ
2π

)
and

11



y(2)
s =

e−i(s− κ
2π )x

8
√

2π

(
(s − κ

2π )4e−ix

(2s + 1 − κ
2π )(2s + 2 − κ

2π )
+

(s − κ
2π )4e−ix

(2s − 1 − κ
2π )(2s − 2 − κ

2π )

)
.

The perturbed eigenvalues are then of the form yε
s = y0

s + εy
(1)
s + ε2y

(2)
s . Upon

rearranging these values we can get them to be equivalent to the forms given in
the statement of the theorem. �

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

κ

λε
(κ

)

Spectral gap occurring at intersection of λε
s
(κ) and λε

t
(κ) for s = −1, t = 2, ε = 0.1

Figure 4: The ε-perturbation creates a quasi-intersection from the intersection
of two terms. The spectral bands and spectral gaps are obtained as projections
of the perturbed terms λε

s(κ) onto the vertical λ-axis.

Our technique allows us to calculate the spectral band gaps separating the
spectral bands. For this problem, intersections of λ0

s(κ) and λ0
t (κ) will only

occur when κ = 0, π, 2π, with t = κ
π − s. The degenerate eigenvalues will then

be associated to the subspace of dimension 2 generated by |s0〉 and |t0〉. If we
define the operator

Aε
s =

(〈s0|Aε|s0〉 〈s0|Aε|t0〉
〈t0|Aε|s0〉 〈t0|Aε|t0〉

)
,

then we see that we obtain the perturbed eigenvalues λε
s and λε

t by solving
det(Aε

s − λε) = 0 for λε. Note that the entries off of the main diagonal of

12



Aε
s−λε are of the order O(ε|s−t|). This suggests that the spectral gaps decrease

with increasing s. From [3], [7], [8], and [10], we obtain the creation of a quasi-
intersection instead of an intersection, explaining the observation of a spectral
gap.
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8 Appendix: Alternate Proof

Proof For an alternative proof to the main theorem, consider the expansion
(up to O(ε3)) of Aε|sε〉 = λε

s|sε〉, with the same assumptions as before. Then

(I−εV +ε2V 2)A0(|s0〉+ε|sε
1〉+ε2|sε

2〉) = (λ0
s +ελ̃1

s +ε2λ̃2
s)(|s0〉+ε|sε

1〉+ε2|sε
2〉),

so, for the terms with ε-powers 0, 1, and 2, we have

A0|s0〉 = λ0
s|s0〉, A0|sε

1〉 − V A0|s0〉 = λ̃1
s|s0〉 + λ0

s|sε
1〉, and

A0|sε
2〉 − V A0|sε

1〉 + V 2A0|s0〉 = λ̃2
s|s0〉 + λ̃1

s|sε
1〉 + λ0

s|sε
2〉

respectively for the coefficients. The first of these equations gives us what we
already know from our assumptions. The second, when multiplied on the left
by 〈s0|, gives λ̃1

s = −vssλ
0
s and, when multiplied on the left by 〈s′0|, gives

−vs′sλ
0
s + λ0

s′ 〈s′0, sε
1〉 = λ0

s〈s′0, sε
1〉,

which after summation over all s′ �= s gives∑
s′ �=s

µs
s′vs′s|s′0〉 = |sε

1〉.

By a similar argument, we see that we can obtain

λ̃2
s = λ0

s

(
v2

ss −
∑
s′ �=s

(µs
s′vss′vs′s)

)
and

∑
s′,s′′ �=s

µs
s′µs

s′′vs′s′′vs′′s|s′0〉 −
∑
s′ �=s

(µs
s′ + 1)µs

s′vs′svss|s′0〉 = |sε
2〉

from the third equation from multiplication on the left by 〈s0| and
∑

s′ �=s〈s′0|
respectively. �
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