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ABSTRACT. It is known that Dodgson’s rule is computationally very demanding. Tideman
(1987) suggested an approximation to it but did not investigate how often his approximation se-
lects the Dodgson winner. We show that under the Impartial Culture assumption the probability
that the Tideman winner is the Dodgson winner tend to 1. However we show that the conver-
gence of this probability to 1 is slow. We suggest another approximation — we call it Dodgson
Quick — for which this convergence is exponentially fast. Also we show that Simpson and Dodg-
son rules are asymptotically different. We formulate, and heavily use in construction of examples,
the generalization of McGarvey’s theorem (1953) for weighted majority relations.
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1 Introduction

Condorcet proposed that a winner of an election is not legitimate unless a majority of the popula-
tion prefer that alternative to all other alternatives. However such a winner does not always exist.
A number of voting rules have been proposed which select the Condorcet winner if it exists, and
otherwise selects an alternative that is in some sense closest to being a Condorcet Winner. A prime
example of such as rule was the one proposed by Dodgson (1876).

Unfortunately, Bartholdi et al. (1989) proved that finding the Dodgson winner is an NP-hard
problem. Hemaspaandra et al. (1997) refined this result by proving that it is Θp

2-complete and
hence is not NP-complete unless the polynomial hierarchy collapses. For this reason, we inves-
tigate the asymptotic behaviour of simple approximations to the Dodgson rule as the number of
agents gets large. Under the assumption that all votes are independent and each type of vote is
equally likely, the probability that the Tideman (1987) approximation picks the Dodgson winner
does asymptotically converge to 1, but not exponentially fast.

We propose a new social choice rule, which we call Dodgson Quick. The Dodgson Quick ap-
proximation does exhibit exponential convergence, and we can quickly verify that it has chosen
the Dodgson winner. This, together with other nice properties, makes our new approximation
useful in computing the Dodgson winner. This approximation could be used to develop an algo-
rithm to choose the Dodgson winner with O(lnn) expected running time for a fixed number of
alternatives and n agents.

A similar result was independently obtained by Homan and Hemaspaandra (2005). They de-
veloped a “greedy” algorithm that finds the Dodgson winner with probability approaching 1 as
we increase the number of voters. This convergence is also exponentially fast. However they
do not suggest any rule and, unlike their algorithm, the Dodgson Quick rule requires only the
information in the weighed majority relation.

Our experimental results (McCabe-Dansted and Slinko, 2006) showed that Simpson’s and Dodg-
son’s rules are very close. However, we discover that the frequency that the Simpson rule picks
the Dodgson winner does not converge to one.

McGarvey (1953) proved that for any tournament, we can find a profile such that the tourna-
ment is the majority relation on that profile. A tournament can be represented (and defined as) a
complete and asymmetric graph. However the graphs of ordinary majority relations do not have
advantages attached to their edges. For the purposes of constructing the examples in this paper,
we also needed the advantages to be correct. Thus we cannot use the McGarvey theorem here.

Fortunately for any weighted tournament, we can find a society with that weighted tournament
as its weighted majority relation, if and only if all the weights are even or all the weights are odd.
Thus we can check at a glance that all the weights on the weighted tournament are odd. We also
check that there are no missing edges, because this is equivalent to an edge with weight of zero,
which is even. This can be done easily without even needing to reach for a pencil.

The first paper that mentions this result was probably Debord’s PhD thesis (1987) as quoted by
Vidu (1999). However this source is inaccessible to the author, and we will give an independent
proof in this paper.
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2 Preliminaries

In the introduction we described voting procedures which took rankings from each voter and out-
put either a ranking of the candidates or a single winner. Procedures which only output a winner
are called social choice functions. These are the procedures we will study in this paper. Histori-
cally SCFs were often called rules. Below we will formally define SCFs and, discuss classifications
for such rules and give definitions for the SCFs we will study in this paper.

We assume that agents’ preferences are transitive, i.e. if they prefer a to b and prefer b to c they
also prefer a to c. We also assume that agents preferences’ are strict, if a and b are distinct they
either prefer a to b or b to a. Thus we may consider each agent’s preferences to be a ranking of
each alternative from best to worst.

Let A and N be two finite sets of cardinality m and n respectively. The elements of A will be
called alternatives, the elements of N agents. We assume that the agents have preferences over
the set of alternatives. By L(A) we denote the set of all linear orders on A; they represent the
preferences of agents over A. For example if A is {a, b, c}, then L(A) is the set of all permutations
of abc, i.e. {abc, acb, bac, bca, cab, cba}. The elements of the Cartesian product

L(A)n = L(A) × · · · × L(A) (n times)

are called profiles, for example, where A = {a, b, c} the ordered set (abc, bca) is a possible profile
for a society with two voters. The profiles represent the collection of preferences of an n-element
society of agents N . Let P = (P1, P2, . . . , Pn) be our profile. If a linear order Pi ∈ L(A) represents
the preferences of the i-th agent, then by aPib, where a, b ∈ A, we denote that this agent prefers a

to b.
A family of mappings F = {Fn}, n ∈ N,

Fn : L(A)n → A,

is called a social choice function (SCF).
Let P = (P1, P2, . . . , Pn) be our profile. We define nxy to be the number of linear orders in P

that rank x above y, i.e. nxy ≡ #{i | xPiy}. The approximations we consider depend upon the
information contained in the matrix NP , where (NP )ab = nab. Many of them use the numbers

adv(a, b) = max(0, nab − nba) = (nab − nba)
+,

which will be called advantages. Note that adv(a, b) = max(0,W (a, b)) = W (a, b)+ where W is
the weighted majority relation on P .

A Condorcet winner is an alternative a for which adv(b, a) = 0 for all other alternatives b. A
Condorcet winner does not always exist. The rules we consider below attempt to pick an alterna-
tive that is in some sense closest to being a Condorcet winner, and will always pick the Condorcet
winner when it exists.

The social choice rules we consider are based on calculating the vector of scores. In the rules we
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describe below, the alternative with the lowest score wins. Let the lowest score be s. It is possible
that more than one alternative has a score of s. In this case we may have a set of winners with
cardinality greater than one. Strictly speaking, to be a social choice function, a rule has to output
a single winner. Rules are commonly modified to achieve this by splitting ties according to the
preference of the first voter. However we will usually study the set of tied winners rather than the
single winner output from a tie-breaking procedure, as this will give us more information about
the rules.

The Dodgson score (Dodgson 1876, see e.g. Black 1958; Tideman 1987), which we denote as
Scd(a), of an alternative a is the minimum number of neighbouring alternatives that must be
swapped to make a a Condorcet winner. For example, say our profile is the single vote cba. Then
we swapping a and c would make a a Condorcet winner, however c and a are not neighbouring,
so we would have to first swap ba and then swap ca. Hence the Dodgson score of a is 2. We call
the alternative(s) with the lowest Dodgson score(s) the Dodgson winner(s).

The Simpson score (Simpson 1969, see e.g. Laslier 1997) Scs(a) of an alternative a is

Sc s(a) = max
b6=a

adv(b, a).

Although the Simpson rule was not designed to approximate the Dodgson rule, it is slightly
simpler than the other approximations we study and so we are interested in whether it approxi-
mates the Dodgson rule well for a large number of voters. We call the alternative(s) with the low-
est Simpson score(s) the Simpson winner(s). That is, the alternative with the smallest maximum
defeat is the Simpson winner. This is why the rule is often known as the Maximin or Minimax
rule.

The Tideman score (Tideman, 1987) Sct(a) of an alternative a is

Sct(a) =
∑

b6=a

adv(b, a).

We call the alternative(s) with the lowest Tideman score(s) the Tideman winner(s). Tideman
suggested this approximation as it can be quite hard to compute the Dodgson winner.

The Dodgson Quick (DQ) score Scq(a), which is introduced in this paper for the first time, of
an alternative a is

Scq(a) =
∑

b6=a

F (b, a),

where F (b, a) =

⌈

adv(b, a)

2

⌉

.

We call the alternative(s) with the lowest Dodgson Quick score(s) the Dodgson Quick winner(s)
or DQ-winner.

The impartial culture assumption is that all possible profiles P are equally likely, i.e. all agents
are independent and all linear orders are equally likely. This assumption is of course unrealistic.
Worse, we have found that the choice of probability model can affect the similarities between ap-
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proximations to the Dodgson rule (McCabe-Dansted and Slinko, 2006). However it is impossible
to select an assumption that accurately reflects the voting behaviour of all voting societies. Berg
(1985) suggests studying voting properties under a variety of voting assumptions. We have con-
ducted a broader survey of relationships between voting rules McCabe-Dansted and Slinko (2006),
in this paper we instead seek to gain an in depth understanding of the Approximability of Dodg-
son’s rule. This requires us to focus on a single assumption of voting behaviour. The impartial
culture is the simplest assumption available. As noted by Berg (1985), many voting theorists have
chosen to focus their research based upon the impartial culture assumption. Thus an in depth
study of the Approximability of Dodgson’s rule under the impartial culture is a natural first step.

We may derive a multinomial distribution from the impartial culture assumption as follows. Let
P be a random profile defined on a set of m alternatives A and n agents. Let then X be a vector
where each Xi represents the number of occurrences of a distinct linear order in the profile P .
Then, under the impartial culture assumption, the vector X is (n, k,p)-multinomially distributed
with k = m! and p = 1k/k = ( 1

k , 1
k , . . . , 1

k ).
An (n, k,p)-multinomial distribution is similar to a binomial distribution with n trials. However

such a multinomial distribution has k elementary outcomes instead of just “success” and “failure”.
An (n, p)-binomial distribution is defined similarly.

3 A McGarvey Theorem for Weighted Tournaments

The McGarvey Theorem (1953) is a famous theorem that states that every tournament can be rep-
resented as a majority relation for a certain society of voters. We will prove a generalization of the
McGarvey Theorem to weighted tournaments and weighted majority relations.

Laslier (1997), calls weighted tournaments “generalized tournaments”. However the term “gen-
eralized tournament” seems to be less popular with other authors and the term “weighted tour-
nament” gives an indication of how the tournament has been generalized.

Like most other authors, Laslier defines weighted tournaments as matrices and tournaments as
(complete and asymmetric) binary relations. However Laslier notes that there are many different
equivalent definitions of tournaments, of which Laslier gives four examples. In this paper we
define both tournaments and weighted tournaments as functions, for consistency.

Definition 3.1 Let a weighted tournament on A be a function W : A × A → Z, such that W (a, b) =

−W (b, a) for all a, b. We call W (a, b) a weight if a 6= b.
We may equivalently draw a weighted tournament as a weighted graph, i.e. a directed graph with integers

(weights) attached to edges. An edge is drawn from a to b, with an arrow pointing to b, if and only if
W (a, b) > 0.

Note 3.2 Tournaments are not indifferent between any pair of distinct alternatives. For this reason we
cannot convert a weighted tournament which contains a 0 weight to an ordinary tournament simply by
removing the weights form the edges of the directed graph.

4



Definition 3.3 We define the sum W1 + W2 of two weighted tournaments as a function f , where for all
alternatives a and b we have:

f(a, b) = W1(a, b) + W2(a, b).

Similarly, we define the difference between two weighted tournaments W1 − W2 as a function f where for
all alternatives a and b we have:

f(a, b) = W1(a, b) − W2(a, b).

Definition 3.4 We define the weighted majority relation W P on a profile P as the weighted tournament
where each weight WP(a, b) of a pair of alternatives (a, b) equals nab − nba

1. We say that a profile P
generates a weighted tournament W P if WP is the weighted majority relation on P .

For example, we say that the profile {abc, abc, cab, cab, bca} generates the weighted tournament
above.

Note 3.5 adv(a, b) = WP(a, b)+, where x+ = max(0, x). Similarly W P(a, b) = adv(a, b) − adv(b, a).

Below we define the tournament and majority relation as function. The definition of tournament
below is equivalent to the more traditional definition as a complete and asymmetric binary rela-
tion, used by Laslier (1997); we simply write W (a, b) = 1 where Laslier would write aWb.

Our definition of majority relation is also equivalent to Laslier’s (1997, p. 34, definition 2.1.2).
Some other authors include a λ -parameter or tie-breaking in their definition of a majority relation.
We do not include λ or tie-breaking in our definition; these concepts are not needed to express the
McGarvey theorem.

Definition 3.6 A tournament W on A is a weighted tournament where all weights are 1 or -1.

Definition 3.7 We define the majority relation W P on a profile P as the tournament where each weight
WP(a, b) of a pair of alternatives (a, b) equals 1 if and only if nab − nba is greater than zero. We say that a
profile P generates a tournament W P if WP is the majority relation on P .

Definition 3.8 For a weighted tournament W , for which all weights are non-zero, we define the reduction
of W to be the tournament WS where:

WS(a, b) = 1 ⇐⇒ W (a, b) > 0.

Thus, from the definition of a weighted tournament:

WS(a, b) =











1 if W (a, b) > 0

−1 if W (a, b) < 0

0 if a = b

.

1We define ndc, for any pair of alternatives d and c, as the number of agents in our profile P who rank c above d, i.e.
#{dPic}.
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Note 3.9 If WP is the weighted majority relation on the profile P , then the reduction W P
S is the majority

relation on the profile P .

Definition 3.10 The majority relation on a profile P is the reduction W P
S of WP , where WP is the

weighted majority relation on P .

We will now state the McGarvey Theorem in terms of tournaments and majority relations:

Theorem 3.11 (McGarvey 1953) For every tournament W there exists a profile P such that W is the
majority relation generated by P .

Lemma 3.12 Let WP be a weighted majority relation on a profile P with n agents, then all weights in W P

have the same parity as n. That is, for each pair of distinct alternatives a and b, the weight W P(a, b) is even
if and only if n is even.

Proof. We know that for all alternatives a and b we have W P(a, b) = nab−nba and n = nba+nab.
Hence WP(a, b) + n = 2nab and so WP(a, b) and n have the same parity.

Lemma 3.13 For a weighted tournament W with all weights being even, we may construct a profile P for
which W is a weighted majority relation. This profile has exactly

∑

W (a, b)+ agents.

Proof. We may construct such a profile as follows:
We start with an empty profile P . For each pair of alternatives (a, b), for which the weight

W (a, b) is positive, we let k = W (a, b)/2. We take a linear order v, on the set of alternatives A,
such that avb and bvx for all x 6= a, b. For example, v = abcde. We then reverse the linear order,
keeping a ranked above b, in this case producing w = edcab. We add k instances of v and k

instances of w to the profile P . This ensures that the weight of (a, b) generated by profile P is
equal to W (a, b) without affecting the weight of (x, y) where (b, a) 6= (x, y) 6= (a, b).

For each positive weight W (a, b) we used exactly W (a, b) agents. Thus there are exactly
∑

W (a, b)+

agents in the constructed profile.

Note 3.14 In the lemma above we have found an upper bound
∑

W (a, b)+ on the number of agents re-
quired. Where we have m alternatives and all positive weights are 2 (the smallest positive even number),
we require 2

(m
2

)

agents. This is the same upper bound that McGarvey found for ordinary tournaments. As
McGarvey suspected, there was a tighter upper bound. Erdös and Moser (1964) has shown that for ordi-
nary tournaments we will require no more than c1m/ lnm agents, where c1 is some fixed positive constant.
From the previous work by Stearns (1959) we know that it is not possible to find tighter bound than this for
ordinary tournaments, as there exists a positive constant c2 such that for all m there exists a tournament,
with only m alternatives, for which more than c2m/ lnm agents are required.

For a weighted tournament with a weight W (a, b) = w, we know that the profile will need to contain at
least w agents that prefer a to b. Thus maxa,b(W (a, b)) provides a lower bound on the number of agents
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required for weighted tournaments, and so the number of required agents n is unbounded for a fixed number
of alternatives m. It follows that Erdös and Moser’s bound does not apply to weighted tournaments. Never-
the-less, it may be possible to find an equivalent of this bound for weighted tournaments. We have not
attempted to do so.

Lemma 3.15 For a weighted tournament W with all weights being odd, we may construct a profile which
generates this weighted tournament. We will need no more than

m(m − 1)

2
+

∑

(a,b)

W (a, b)+

agents to construct this profile.

Proof. Let W1 be the weighted majority relation of a profile consisting of a single arbitrarily
chosen linear order v. Let W2 = W − W1.

Note that as W1 is generated from a profile with an odd number (i.e. one) of linear orders, all the
weights in W1 must be odd. Thus all weights in W2 are the difference between two odd numbers.
Hence all weights in W2 are even and we can construct a profile for which W2 is the majority
relation, as shown by Lemma 3.13. Since W = W1 + W2, joining the profiles that generate W1 and
W2 constructs a profile that generates W .

Now we shall determine an upper bound on how many agents we will need. Say that P1,
P2, and P are the profiles we constructed that generate W1, W2, and W respectively. From the
construction in Lemma 3.13, there will be exactly

∑

(a,b) W2(a, b)+ agents in P2, and thus exactly
1 +

∑

(a,b) W2(a, b)+ agents in P . We may pick v such that cvd, where c, d are alternatives such
that W (c, d) ≥ 1. As W2 = W − W1, we have W2(c, d)+ = W (c, d)+ − 1.

In a complete graph with m vertices, there are m(m− 1)/2 edges. Thus, for m(m− 1)/2 pairs of
alternatives W1(a, b) = −1, and hence W2(a, b) = W (a, b) + 1. Thus for no more than m(m − 1)/2

pairs (a, b) of alternatives W2(a, b) = W (a, b) + 1. Thus,

∑

(a,b)

W2(a, b)+ ≤ (−1) +
m(m − 1)

2
+

∑

(a,b)

W (a, b)+.

Now we have an upper bound for the number of agents we will need to construct P2. As there is
one more agent in P that is not in P2, we know that we need at most

m(m − 1)

2
+

∑

(a,b)

W (a, b)+

agents to construct P .

We may now prove our generalisation to the McGarvey theorem.

Theorem 3.16 There exists a profile that generates a weighted tournament W if and only if all weights in
W have the same parity.
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Proof. (⇐=) From the last two lemmas, we know that if all weights are even or if all weights
are odd, we can construct a profile that generates W .

( =⇒ ) We know that if n is odd our profile will generate a weighted tournament with all
weights odd, if n is even our profile will generate a weighted tournament with all weights even.
Thus every profile generates a weighted tournament for which either all weights are even or all
weights are odd.

Note 3.17 All weights in a tournament WS are odd (1 or -1). Thus from Theorem 3.16, we may find a
profile P such that the weighted majority relation W P is equal to WS . As WP is already an ordinary
tournament, its reduction W P

S is equal to WP , and hence also equal to WS .
Hence the McGarvey theorem, that for all tournaments WS there exists a profile P such that the majority

relation W P
S is equal to WS , is a special case of Theorem 3.16.

4 Dodgson Quick, A New Approximation

Definition 4.1 We say that b is ranked directly above a in a linear order v if and only if avb and there
does not exist c different from a, b such that avc ∧ cvb.

Definition 4.2 Recall that given a profile P , we define D(b, a) as the number of agents who rank b directly
above a in their preference list, and we define F (b, a) and the Dodgson Quick (DQ) score Scq(a) of an
alternative a as follows2

F (b, a) =

⌈

adv(b, a)

2

⌉

,

Scq(a) = Σb6=aF (b, a).

The Dodgson Quick score and the rule Dodgson Quick (DQ) based on that score is introduced in
this paper. Recall also that we define the Dodgson score Scd(a) of an alternative a as the minimum
number of neighbouring preferences that must be swapped to make a a Condorcet winner.

Lemma 4.3 For distinct alternatives a, b ∈ A, under the impartial culture assumption nba and D(b, a) are
binomial random variables with means of n/2 and n/m respectively.

Proof. For each linear order v, we may reverse the order v to produce its opposite v̄, i.e.
cvd ⇔ dv̄c for all c, d ∈ A. This operation v 7→ v̄ provides a bijection between linear orders
where b is ranked above a and those where b is ranked below a. Hence these two sets of linear

2We define dxe as the ceiling of x, the smallest integer that is greater than or equal to x. We define nba as the number
of agents who ranked alternative b above alternative a in their preference list.
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orders have the same cardinality. Under the impartial culture assumption, this implies that the
probability that any agent ranks b above a is 1/2.

The number of ways that b can be ranked directly above a is easily calculated if we consider the
pair ba to be one object. Then we see that this number is equal to the number of permutations of
(m−1) objects, i.e. (m−1)!. The probability that b is ranked directly above a is (m−1)!/m!, which
is equal to 1/m.

Since votes are independent under the impartial culture assumption, nba and D(b, a) are bino-
mially distributed random variables. The mean of a binomially distributed random variable is np,
so the means of nba and D(b, a) are n/2 and n/m, respectively.

Lemma 4.4 Under the impartial culture assumption, the probability that D(x, a) >F (x, a) for all x con-
verges exponentially fast to 1 as the number of agents n tends to infinity.

Proof. Under the impartial culture assumption, nba and D(b, a) are binomially distributed with
means of n/2 and n/m respectively. From Chomsky’s (Dembo and Zeitouni, 1993) large deviation
theorem, we know that for a fixed number of alternatives m there exist β1 > 0 and β2 > 0 such
that

P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n,

P

(

nba

n
− 1

2
>

1

4m

)

≤ e−β2n.

We can rearrange the second equation to involve F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

= P

(

2nba

n
− 1 >

1

2m

)

= P

(

2nba − n

n
>

1

2m

)

= P

(

nba − (n − nba)

n
>

1

2m

)

= P

(

nba − nab

n
>

1

2m

)

= P

(

adv(b, a)

n
>

1

2m

)

.

Since adv(b, a) ≥ F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

≥ P

(

F (b, a)

n
>

1

2m

)

.
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From this and the law of probability P (A ∨ B) ≤ P (A) + P (B) it follows that

P

(

F (b, a)

n
>

1

2m

)

≤ e−β2n,

P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n,

and so, where β = min(β1, β2),

P

(

F (b, a)

n
>

1

2m
∨ D(b, a)

n
<

1

2m

)

≤ e−β1n + e−β2n

≤ 2e−βn.

Hence

P

(

∃x
F (x, a)

n
>

1

2m
∨ D(x, a)

n
<

1

2m

)

≤ 2me−βn.

Using P (Ē) = 1 − P (E), we find that

P

(

∀x
F (x, a)

n
<

1

2m
<

D(x, a)

n

)

≥ 1 − 2me−βn.

Lemma 4.5 The DQ-score Scq(a) is a lower bound for the Dodgson Score Scd(a) of a.

Proof. Let P be a profile and a ∈ A. Suppose we are allowed to change linear orders in P ,
by repeated swapping neighbouring alternatives. Then to make a a Condorcet winner we must
reduce adv(x, a) to 0 for all x and we know that adv(x, a) = 0 if and only if F (x, a) = 0. Swapping
a over neighbouring alternative b will reduce (nba −nab) by two, but this will not affect (nca −nac)

where a 6= c. Thus swapping a over neighbouring b will reduce F (b, a) by one, but will not affect
F (c, a) where b 6= c. Therefore, making a a Condorcet winner will require at least ΣbF (b, a) swaps.
This is the DQ-Score Scq(a) of a.

Lemma 4.6 If D(x, a) ≥ F (x, a) for every alternative x, then the DQ-Score Scq(a) of a is equal to the
Dodgson Score Scd(a).

Proof. If F (b, a) ≤ D(b, a), we can find at least F (b, a) linear orders in the profile where b

is ranked directly above a. Thus we can swap a directly over b, F (b, a) times, reducing F (b, a)

to 0. Hence we can reduce F (x, a) to 0 for all x, making a a Condorcet winner, using ΣxF (x, a)

swaps of neighbouring preferences. In this case, Scq(a) = ΣbF (b, a) is an upper bound for the
Dodgson Score Scd(a) of a. From Lemma 4.5 above, Scq(a) is also a lower bound for Scd(a).
Hence Scq(a) = Scd(a).
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Corollary 4.7 If D(x, a) ≥ F (x, a) for every pair of distinct alternatives (x, a), then the DQ-Winner is
equal to the Dodgson Winner.

Theorem 4.8 Under the impartial culture assumption, the probability that the DQ-Score Scq(a) of an
arbitrary alternative a is equal to the Dodgson Score Scd(a), converges to 1 exponentially fast.

Proof. From Lemma 4.6, if D(x, a) ≥ F (x, a) for all alternatives x then Scq(a)= Scd(a) however
from Lemma 4.4, P (∀x D(x, a) ≥ F (x, a)) converges exponentially fast to 1 as n → ∞.

Corollary 4.9 There exists an algorithm that computes the Dodgson score of an alternative a given the
frequency of each linear order in the profile P as input, with expected running time that is logarithmic with
respect the number of agents (i.e. is O(lnn) for a fixed number of alternatives m).

Proof. The are at most m! distinct linear orders in the profile. Hence for a fixed number
of alternatives the number of distinct linear orders is bounded. Hence we may find the DQ-score
using and check whether D(x, a) ≥ F (x, a) for all alternatives x using a fixed number of additions.
The largest number that needs to be added is proportional to the number of agents n. Additions
can be performed in time linear with respect to the number of bits - logarithmic with respect to
the size of the number. So we have only used an amount of time that is logarithmic with respect
to the number of agents.

If D(x, a) ≥ F (x, a) for all alternatives x, we know that the DQ-score is the Dodgson score and
we do not need to go further. From Lemma 4.4 we know that the probability that we need go
further declines exponentially fast, and we can still find the Dodgson score in time polynomial
with respect to the number of agents (Bartholdi et al., 1989).

Corollary 4.10 There exists an algorithm that computes the Dodgson winner given the frequency of each
linear order in the profile P , and has expected running time that is logarithmic with respect the number of
agents.

Corollary 4.11 Under the impartial culture assumption, the probability that the DQ-Winner is the Dodg-
son Winner converges to 1 exponentially fast as we increase the number of agents.

Obvious from Theorem 4.8 above.

5 Tideman’s Rule

Recall that in Section 2 we defined the Tideman score Sct(a) of an alternative a as

Sc t(a) =
∑

b6=a

adv(b, a),

and that the Tideman winner is the candidate with the lowest score.
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Lemma 5.1 Given an even number of agents, the Tideman winner and the DQ-winner will be the same.

Proof. Since the n is even, we know from Lemma 3.12 that all weights in the majority relation
W are even. Since the adv(a, b) ≡ W (a, b)+ it is clear that all advantages will also be even. Since
adv(a, b) will always be even, dadv(a, b)/2e will be exactly half adv(a, b) and so the DQ-score will
be exactly half the Tideman score. Hence the DQ-winner and the Tideman winner will be the
same.

Corollary 5.2 Under the impartial culture assumption, for 2n agents and a fixed number of alternatives
m, the probability that the Tideman winner is the Dodgson winner converges to 1 exponentially fast as n

approaches infinity.

Proof. If there are an even number of agents the Tideman winner equals the DQ-winner
(Lemma 5.1) and the probability that the DQ-winner is the Dodgson winner exponentially fast
(Corollary 4.11).

Corollary 5.3 If the number of agents is even and D(x, a) ≥ F (x, a) for every pair of distinct alternatives
(x, a), then the Tideman Winner is equal to the Dodgson Winner.

Obvious from Lemma 5.1 above and Corollary 4.7.

Corollary 5.4 If the Tideman winner is not the DQ-winner, all non-zero advantages are odd.

Proof. As we must have an odd number of agents, from Lemma 3.12 all weights in the majority
relation W must be odd. Since the adv(a, b) ≡ W (a, b)+ the advantage adv(a, b) must be zero or
equal to the weight W (a, b).

Lemma 5.5 There is no profile with three alternatives such that the Tideman winner is not the DQ-winner.

Proof. The Tideman and Dodgson Quick rules both pick the Condorcet winner when it ex-
ists, so if a Condorcet winner exists the Tideman winner and DQ-winner will be the same. It
is well known that the absence of a Condorcet winner on three alternatives means that we can
rename these alternatives a, b and c so that adv(a, b) > 0, adv(b, c) > 0, and adv(c, a) > 0.
These advantages must be odd from the previous corollary. Hence for some i, j, k ∈ Z such that
adv(a, b) = 2i−1, adv(b, c) = 2j−1, and adv(c, a) = 2k−1. The DQ-Scores and Tideman scores of
a, b, c are i, j, k and 2i−1, 2j−1, 2k−1 respectively. From here the result is clear, since if i > j > k

then 2i − 1 > 2j − 1 > 2k − 1.

Lemma 5.6 For a profile with four alternatives there does not exist a pair of alternatives such that a is a
DQ-winner but not a Tideman winner, and b is a Tideman winner but not a DQ-winner.

12



Proof. By way of contradiction assume that there exist such a, b. Thus there is no Condorcet
winner, and so for each alternative c there are one to three alternatives d such that adv(c, d) > 0.
Also, since the set of Tideman winners and DQ-winners differ, n must be odd and hence all non-
zero advantages must be odd. The relationship between the Tideman score Sct(c) and the DQ-
score Scq(c) is as follows:

Sct(c) =
∑

d∈A

adv(c, d)

=
∑

d∈A

⌈

adv(c, d)

2

⌉

− #{c : adv(c, d) /∈ 2Z}

= Scq(c) − (1 or 2 or 3).

Thus,

2Scq(c) − 3 ≤ Sct(c) ≤ 2Scq(c) − 1,

and so,

Sct(a) ≤ 2Scq(a) − 1.

Given that a is DQ-winner and b is not, we know

Scq(a) ≤ Scq(b) − 1.

Thus by substitution,

Sct(a) ≤ 2(Scq(b) − 1) − 1

= 2Scq(b) − 3

≤ Sct(b).

This shows that if b is a Tideman winner, so is a. By contradiction the result must be correct.

Example 5.7 There do exist profiles with four alternatives where the set of tied Tideman winners differs
from the set of tied DQ-winners. By Theorem 3.16, we know we may construct a profile with the following
advantages:

a

1

1

13

5
5

c

b
x

Scores a b c x

Tideman 5 3 5 3
DQ 3 2 3 3

13



Here x, b are tied Tideman winners, but b is the sole DQ-winner.

Example 5.8 There do exist profiles with five alternatives where there is a unique Tideman winner that dif-
fers from the unique DQ-winner. By Theorem 3.16, we know we may construct a profile with the following
advantages:

1

1

1

1

5

1

19

9
9

x

y

b

a

c

Scores a b c x y

Tideman 10 10 9 4 5
DQ 6 6 5 4 3

Here x is the sole Tideman winner, but y is the sole DQ-winner.

Theorem 5.9 For any m ≥ 5 there exists a profile with m alternatives and an odd number of agents, where
the Tideman winner is not the DQ-winner.

On page 14 there is an example of a weighted majority relation where the Tideman winner is not
the Dodgson Quick winner. To extend this example for larger numbers of alternatives, we may
add additional alternatives who lose to all of a, b, c, x, y. From Theorem 3.16 and Lemma 3.12,
there exists a profile with an odd number of agents that generates that weighted majority relation.

Theorem 5.10 Under the impartial culture assumption, if we have an even number of agents, the proba-
bility that all of the advantages are 0 does not converge to 0 faster than O(n−m!

4 ).

Proof. Let P be a random profile, V = {v1,v2, . . . ,vm!} be an ordered set containing all m!

possible linear orders on m alternatives, and X be a random vector, with elements Xi representing
the number of occurrences of vi in P . Under the impartial culture assumption, X is distributed
according to a multinomial distribution with n trials and m! possible outcomes. Let us group the
m! outcomes into m!/2 pairs Si = {vi, v̄i}. Denote the number of occurrences of v as n(v). Let the
random variable Y 1

i be n(vi) and Y 2
i be n(v̄i). Let Yi = Y 1

i + Y 2
i .

It is easy to show that, given Yi = yi for all i, each Y 1
i is independently binomially distributed

with p = 1/2 and yi trials. It is also easy to show that an arbitrary integer n, a (2n, 0.5)-binomial
random variable X has a probability of at least 1√

2n
of equaling n where n > 0; thus if yi is even

then the probability that Y 1
i = Y 2

i is at least 1
2
√

yi
. Combining these results we get

P (∀iY
1
i = Y 2

i |∀iYi = yi ∈ 2Z) ≥
∏

i

1

2
√

yi

≥
∏

i

1

2
√

n
= 2−

m!

2 n−m!

4 .

It is easy to show that for any k-dimensional multinomially distributed random vector, the prob-
ability that all k elements are even is at least 2−k+1; hence the probability that all Xi are even is at
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least 2−k+1 where k = m!/2. Hence

P (∀iXi,1 = Xi,2) ≥
(

2−
m!

2
+1

) (

2−
m!

2 n−m!

4

)

= 21−m!n−m!

4 .

If for all i, Xi,1 = Xi,2 then for all i, n(vi) = n(v̄i), i.e. the number of each type of vote is the same
as its complement. Thus

nba =
∑

v∈{v:bva}
n(v) =

∑

v̄∈{v̄:av̄b}
n(v̄) =

∑

v∈{v:avb}
n(v) = nab,

so adv(b, a) = 0 for all alternatives b and a.

Corollary 5.11 Under the impartial culture assumption, if we have an even number of agents, the proba-
bility that all of the advantages are 0, does not converge to 0 at an exponentially fast rate.

Lemma 5.12 Under the impartial culture assumption, the probability that the Tideman winner is not the
DQ-winner does not converge to 0 faster than O(n−m!

4 ) as the number of agents n tends to infinity.

Let P be our random profile with n agents, for some odd number n. Let |C| be the size of the
profile from Theorem 5.9. Let us place the first |C| agents from profile P into sub-profiles C and
the remainder of the agents into sub-profile D. There is a small but constant probability that C

forms the example from Theorem 5.9, resulting in the Tideman winner of C differing from its DQ-
winner. As n, |C| are odd, |D| is even. Thus from Theorem 5.10 the probability that the advantages
in D are zero does not converge to 0 faster than O(n−m!

4 ). If all the advantages in D are zero then
adding D to C will not affect the Tideman or DQ-winners. Hence the probability that the Tideman
winner is not the DQ-winner does not converge to 0 faster than O(n−m!

4 ).

Corollary 5.13 Under the impartial culture assumption, the probability that the Tideman winner is not
the DQ-winner does not converge to 0 exponentially fast as the number of agents n tends to infinity.

Theorem 5.14 Under the impartial culture assumption, the probability that the Tideman winner is not the
Dodgson winner does not converge to 0 faster than O(n−m!

4 ) as the number of agents n tends to infinity.

Proof. From Corollary 4.11 the DQ-winner converges to the Dodgson winner exponentially
fast. However, the Tideman winner does not converge faster than O(n−m!

4 ) to the DQ-winner, and
hence also does not converge faster than O(n−m!

4 ) to the Dodgson winner.

Lemma 5.15 Let S be a subset of A. Let a1a2 . . . a|S| and b1b2 . . . b|S| be two linear orderings of S. Then
the number of linear orders v in L(A) where a1va2, a2va3, . . . , a|S|−1va|S| is equal to the number of linear
orders v where b1vb2, b2vb3, . . . , b|S|−1vb|S|, i.e.

#{v : ∀i∈[2,|S|]ai−1vai} = #{v : ∀i∈[2,|S|]bi−1vbi}.

15



Proof. Let the function f be defined with domain and range L(A) as follows. If ai is ranked
in position j in v then bi is ranked in position j in f(v). If x /∈ S is ranked in some position j in v

then x is still ranked in position j in f(v).

Clearly, if bi is ranked in position j in v then ai is ranked in position j in all members of f−1(v).
If x /∈ S is ranked in some position j in v then x is still ranked in position j in all members of
f−1(v). Hence f−1(v) is a function.

The function f provides a bijection between the sets {v : ∀i∈[2,|S|]ai−1vai}, {v : ∀i∈[2,|S|]bi−1vbi}.
Hence the result.

Corollary 5.16 Let S be a subset of A. The number of linear orders v where ai−1vai for all i = 2, 3, . . . , |S|
is equal to n!/|S|!.

Definition 5.17 We define the adjacency matrix M , of a linear order v, as follows:

Mij =











1 if ivj

−1 if jvi

0 if i = j

.

Lemma 5.18 Suppose that each linear order is equally likely, then M is an m2-dimensional random vari-
able satisfying the following equations for all i, j, r, s ∈ A.

E[M ] = 0

= cov(Mij ,Mrs) = E[MijMrs]

=































1 if i = r 6= j = s

1/3 if i = r, but i, j, s distinct ∨ j = s, others distinct
−1/3 if i = s, others distinct ∨ j = r, others distinct
0 if i, j, r, s distinct ∨ i = j = r = s

−1 if i = s 6= j = r

.

Proof. From Lemma 5.15,

E[Mij ] =
(1) + (−1)

2
= 0.

It is well known that cov(X,Y ) = E[XY ] − E[X]E[Y ] (see e.g. Walpole and Myers 1993; p97).
Thus cov(Mij ,Mrs) = E[MijMrs] − (0)(0) = E[MijMrs]. Note that for all i 6= j we know that
MiiMii = 0, MijMij = 1, and MijMji = −1. If i = r and i, j, s are all distinct then the sign of
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MijMis for each permutation of i, j and s is as shown below.

i i j j s s

j s i s i j

s j s i j i

Mij + + − − + −
Mis + + + − − −

MijMis + + − + − +

Thus from Lemma 5.15,

E[MijMrs] =
+1 + 1 − 1 + 1 − 1 + 1

6
=

1

3
.

If i, j, r, s are all distinct then there are six linear orders v where ivj∧rvs, six linear orders v where
ivj ∧ svr, six linear orders v where jvi∧ rvs, and six linear orders v where jvi∧ svr. Hence from
Lemma 5.15,

E[MijMrs] = 6(1)(1)+6(1)(−1)+6(−1)(1)+6(−1)(−1)
24 = 0 .

We may prove the other cases for cov(Mij ,Mrs) in much the same way.

Corollary 5.19 As var(X) = cov(X,X) we also have,

var(Mij) =

{

1 if i 6= j

0 if i = j
.

Example 1 For example, for m = 4 the covariances with M12 are shown in the matrix

L =













0 1 1/3 1/3

−1 0 −1/3 −1/3

−1/3 1/3 0 0

−1/3 1/3 0 0













,

where Lij = cov(Mij ,M12).

Definition 5.20 Define Y to be a collection of random normal variables indexed by i, j for 1 ≤ i < j ≤ m

each with mean of 0, and covariance matrix Ω, where

Ωij,rs = cov(Yij , Yrs) = cov(Mij ,Mrs),

We may use the fact that i < j, r < s implies i 6= j, r 6= s, (s = i ⇒ r 6= j) and (r = j ⇒ s 6= i) to
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simplify the definition of Ω as shown below:

Ωij,rs =























1 if (r, s) = (i, j)

1/3 if r = i, s 6= j or s = j, r 6= i

−1/3 if s = i or r = j

0 if i, j, r, s are all distinct

,

i.e. if i, j, r, s are all distinct then

Ωij,ij = 1,

Ωij,rj = Ωij,is = 1/3,

Ωij,ri = Ωij,js = −1/3,

Ωij,rs = 0.

Lemma 5.21 As n approaches infinity,
∑n

i=1 Mi/
√

n converges in distribution to


















0 Y12 Y13 · · · Y1m

−Y12 0 Y23 · · · Y2m

−Y13 −Y23 0 · · · Y3m

... ... ... . . . ...
−Y1m −Y2m −Y3m · · · 0



















,

where Mi is the adjacency matrix for the ith linear order in a profile P , and recall that Y is be a collection of
random normal variables indexed by i, j for 1 ≤ i < j ≤ m each with mean of 0, and covariance matrix Ω,
where

Ωij,rs = cov(Yij , Yrs) = cov(Mij ,Mrs).

Proof. As M1,M2, . . . ,Mn are independent identically-distributed (i.i.d.) random variables,
we know from the multivariate central limit theorem (see e.g. Anderson, 1984; p81) that

∑n
i=1 Mi/

√
n

converges in distribution to the multivariate normal distribution with the same mean and covari-
ance as M1. As MT = −M and Mii = 0, we have the result.

Lemma 5.22 Ω is non-singular.

Proof. Consider Ω2:

(Ω2)ij,kl =
∑

1≤r<s≤m

Γij,kl(r, s),

where Γij,kl(r, s) = Ωij,rsΩrs,kl.
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For i, j, r, s distinct then

Γij,ij(i, j) = Ωij,ijΩij,ij = (1)(1) = 1,

Γij,ij(r, j) = Ωij,rjΩrj,ij = (1/3)(1/3) = 1/9,

Γij,ij(i, s) = Ωij,isΩis,ij = (1/3)(1/3) = 1/9,

Γij,ij(r, i) = Ωij,riΩri,ij = (−1/3)(−1/3) = 1/9,

Γij,ij(j, s) = Ωij,jsΩjs,ij = (−1/3)(−1/3) = 1/9,

Γij,ij(r, s) = Ωij,rsΩij,rs = 0.

Case (i, j) = (k, l):

If (i, j) = (k, l) then

Γij,ij(r, s) = Ωij,rsΩrs,ij

=























(1)2 if (r, s) = (i, j)

(1/3)2 if r = i, s 6= j or s = j, r 6= i

(−1/3)2 if s = i, (r 6= j) or r = j, (s 6= i)

0 if i, j, r, s are all distinct

,

Recall that r < s, i < j and r, s ∈ [1,m]. Let us consider for how many values of (r, s) each of
the above cases occur:

• (r, s) = (i, j): This occurs for exactly one value of (r, s).

• r = i, s 6= j: Combining the fact that r < s and r = i we get i < s. Thus s ∈ (i, j) ∪ (j,m],
and there are (j − i − 1) + (m − j) = (m − i − 1) possible values of s. As there is only one
possible value of r this means that there are also (m − i − 1) possible values of (r, s).

• s = j, r 6= i: Combining the fact that r < s and s = j we get r < j. Thus r ∈ [1, i)∪ (i, j), and
there are (i − 1) + (j − i − 1) = (j − 2) possible values of (r, s).

• s = i: Here we want r 6= j, however r < s = i < j, so explicitly stating r 6= j is redundant.
Combining the fact that r < s and s = i we get r < i. Hence r ∈ [1, i] and there are i − 1

possible values for (r, s).

• r = j: Here we want s 6= i, however i < j = r < s, so explicitly stating that r 6= j is
redundant. From here on we will not state redundant inequalities. Combining the fact that
r < s and r = j we get j < s. Hence s ∈ (j,m] and there are m − j possible values for (r, s).
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hence,

∑

1≤r<s≤m

Γij,ij(r, s) = (1)(1) + ((m − i − 1) + (j − 2))

(

1

3

)2

+ ((i − 1) + (m − j))

(−1

3

)2

= 1 + (m + j − i − 3)

(

1

9

)

+ (m + i − j − 1)

(

1

9

)

= (9 + (m + j − i − 3) + (m + i − j − 1)) /9

=
2m + 5

9
.

Case i = k, j 6= l: then,

Γij,il(r, s) = Ωij,rsΩrs,il =

=























1Ωrs,il if (r, s) = (i, j)

1/3Ωrs,il if r = i, s 6= j or s = j, r 6= i

−1/3Ωrs,il if s = i or r = j

0 if i, j, r, s are all distinct

,

more precisely,

Γij,il(r, s) =































































(1)(1/3) = 1/3 if (i, j) = (r, s)

(1/3)(1) = 1/3 if r = i, s = l 6= j

(1/3)(1/3) = 1/9 if r = i, s 6= j, s =6= l

(1/3)(0) = 0 if s = j 6= l, r 6= i

(−1/3)(−1/3) = 1/9 if s = i

(−1/3)(1/3) = −1/9 if r = j, s = l

(−1/3)(0) = 0 if r = j, s 6= l

0 = 0 if i, j, r, s are all distinct

,

hence,
∑

1≤r<s≤m

Γ(r, s) =
1

3
+

1

3
+

∑

1≤r<s≤m,r=i,s6=j,s=6=l

1

9
+

∑

1≤r<s≤m,s=i

1

9
− 1

9

=
1

3
+

1

3
+

∑

i<s≤m

1

9
− 2

9
+

∑

1≤r<i

1

9
− 1

9

=
1

3
+ (m − i)

1

9
+ (i − 1)

1

9

=
m + 2

9
.
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Similarly for i 6= k, j = l, we may show (Ω2)ij,kj = m+2
9 . If j = k then

(Ω2)ij,kl = −1

3
− 1

3
+

1

9
−

∑

1≤r<i,r 6=i

1

9
−

∑

j<s≤m,s6=l

1

9
,

= −m + 2

9
,

similarly for l = i. If i, j, k, l are all distinct, (Ω2)ij,kl equals 0. Consequently

Ω2 =

(

m + 2

3

)

Ω −
(

m + 1

9

)

I

Now, when a matrix Ω satisfies Ω2 = αΩ + βI with β 6= 0 it has an inverse as shown below,

Ω

(

Ω − α

β

)

= I,

and hence Ω is not singular.

Theorem 5.23 The probability that the Tideman winner and Dodgson Quick winner coincide converges
asymptotically to 1 as n → ∞.

Proof. The Tideman winner is the alternative a ∈ A with the minimal value of

G(a) =
∑

b∈A

adv(b, a),

while the DQ-winner has minimal value of

F (a) =
∑

b∈A

⌈

adv(b, a)

2

⌉

.

Let aT be the Tideman winner and aQ be the DQ-winner. Note that G − m ≤ 2F ≤ G. If for
some b we have G(b) − m > G(aT ), then 2F (b) ≥ G(b) − m > G(aT ) ≥ 2F (aT ) and so b is not a
DQ-winner. Hence, if G(b) − m > G(aT ) for all alternatives b distinct from a, then aT is also the
DQ-winner aQ. Thus,

P (aT 6= aQ) ≤ P (∃a,b|G(a) − G(b)| ≤ 2m ∧ a 6= b)

= P

(

∃a,b

∣

∣

∣

∣

G(a) − G(b)√
n

∣

∣

∣

∣

≤ 2m√
n
∧ a 6= b

)

,

thus for any ε > 0 and sufficiently large n, we have

P (aT 6= aQ) ≤ P

(

∃a,b

∣

∣

∣

∣

G(a) − G(b)√
n

∣

∣

∣

∣

≤ ε ∧ a 6= b

)
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We will show that the right-hand side of the inequality above converges to 0 as n tends to ∞. All
probabilities are non-negative so 0 ≤ P (aT 6= aQ). From these facts and the sandwich theorem it
follows that limn→∞ P (aT 6= aQ) = 0. We let,

Gj =
∑

i<j

(Yij)
+ +

∑

k>j

(−Yjk)
+ ,

and so,

lim
n→∞

P

(

∃a,b

∣

∣

∣

∣

G(a) − G(b)√
n

∣

∣

∣

∣

≤ ε ∧ a 6= b

)

= P (∃i,j |Gi − Gj | ≤ ε ∧ i 6= j)

Since ε > 0 is arbitrary, the infimum is ε = 0. Thus,

lim
n→∞

P (aT 6= aQ) ≤ P (∃i,jGi = Gj ∧ i 6= j).

For fixed i < j we have

Gi − Gj = −Yij +
∑

k<i

(−Yki)
+ +

∑

k>i,k 6=i

(Yik)
+ −

∑

k<j,k 6=i

(Ykj)
+ −

∑

k>j

(−Yjk)
+

Define v so that Gi − Gj = −Yij + v. Then P (Gi = Gj) = P (Yij = v) = E[P (Yij = v|v)]. Since
Y has a multivariate normal distribution with a non-singular covariance matrix Ω, it follows that
P (Yij = v|v) = 0. That is, P (Gi = Gj) = 0 for any i, j where i 6= j. Hence P (∃i,jGi = Gj ∧ i 6=
j) = 0. As discussed previously in this proof, we may now use the sandwich theorem to prove
that limn→∞ P (aT 6= aQ) = 0.

6 Numerical Results

Although we have proven theorems on the rate of convergence, tables of figures can help illus-
trate the nature of the convergence. In this section we present tables demonstrating the rate fast
convergence of our Dodgson Quick rule in comparison to the Tideman rule. We also study the
asymptotic limit of the probability that the Simpson winner is the Dodgson winner as we increase
the number of agents.

As shown below the convergence of the Tideman winner to the Dodgson Winner occurs much
slower than the exponential convergence of the DQ-Winner.

Table 1 reports the probability that these rules pick the same winner after we break ties accord-
ing to the preferences of the first agent. It was generated by averaging 10,000 simulations, so the
figures are only approximate, however the trends are clearly significant.

Since the DQ-Winner and Tideman Winner seem to closely approximate Dodgson’s Rule we
may wish to also look at the probability that these rules pick the same set of tied winners, pre-
sented in Table 2.

From Theorem 4.8 we know that the Dodgson Quick winner converges to the Dodgson winner
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at an exponentially fast rate. These figures confirm that for a large number of agents the simple
Dodgson Quick rule provides a very good approximation to the Dodgson rule.

Another question is how well does Dodgson Quick approximate the Dodgson rule with other
numbers of alternatives, or if the number of agents is not large in comparison to the number of
agents. From 3, it appears that our approximation is still reasonably accurate under these condi-
tions. This table was generated by averaging 10,000 simulations, and splitting ties according to
the preferences of the first agent.

To give meaning to these figures, let us compare them with the figures in Tables 4 and 5. We
see that even where the number of agents is not very large, the Dodgson Quick rule seems to do
a slightly better job of approximating the Dodgson rule than Tideman’s approximation. We also
see that Simpson’s rule does a particularly poor job of approximating frequency of the Tideman
approximation picking the Dodgson winner when the number of candidates is large.

As an aside, it would appear that Simpson’s rule is not a very accurate approximation of Dodg-
son’s Rule. The probability that the Simpson winner does not equal the Dodgson winner is much

Table 1: Number of occurrences per 1000 Elections with 5 alternatives that the Dodgson Winner
was not chosen

Voters 3 5 7 9 15 17 25 85 257 1025
DQ 1.5 1.9 1.35 0.55 0.05 0.1 0 0 0 0

Tideman 1.5 2.3 2.7 3.95 6.05 6.85 7.95 8.2 5.9 2.95
Simpson 57.6 65.7 62.2 57.8 48.3 46.6 41.9 30.2 23.4 21.6

Table 2: Number of Occurrences per 1000 Elections with 5 Alternatives that the Set of Tied Dodg-
son Winners is Not Chosen

Voters 3 5 7 9 15 17 25 33 85 257 1025
DQ-Winners 4.31 4.41 3.21 1.94 0.27 0.08 0.04 0 0 0 0

Tideman 4.31 5.57 7.31 8.43 12.73 13.15 15.46 16.35 15.18 10.2 5.4

Table 3: Frequency that the DQ-Winner is the Dodgson Winner

# Agents

#
A

lte
rn

at
iv

es
x 3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9984 0.9976 0.9980 0.9992 0.9999 1.0000 1.0000
7 0.9902 0.9875 0.9879 0.9933 0.9980 0.9995 1.0000
9 0.9792 0.9742 0.9778 0.9837 0.9924 0.9978 0.9999

15 0.9468 0.9327 0.9338 0.9412 0.9571 0.9743 0.9988
25 0.8997 0.8718 0.8661 0.8731 0.8971 0.9265 0.9840
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greater than for Tideman or DQ. We may ask, does the Simpson rule eventually converge to the
Dodgson rule as we increase the number of voters, and if not, how close does it get?

6.1 Asymptotic Behaviour of Simpson’s Rule

From Lemma 4.4 and Theorem 5.23 we know that the Dodgson winner, Dodgson Quick winner,
and Tideman winner all asymptotically converge as we increase the number of agents. Hence we
may compute the asymptotic probability that the Simpson winner is equal to the Dodgson winner,
by computing the asymptotic probability that the Simpson winner equals the Tideman winner.

From Lemma 5.21 we know that the matrix of advantages converges to a multivariate normal
distribution as we increase the number of agents. If we had a multivariate normal random vector
generator, we could use this model to perform simulations and count in how many simulations
the Simpson winner is equal to the Tideman winner. We decided to use a slightly different model
so that we could use a univariate normal random number generator.

Table 4: Frequency that the Tideman winner is the Dodgson winner

# Agents

#
A

lte
rn

at
iv

es
x 3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9984 0.9974 0.9961 0.9972 0.9936 0.9917 0.9930
7 0.9902 0.9864 0.9852 0.9868 0.9845 0.9805 0.9847
9 0.9792 0.9730 0.9724 0.9731 0.9718 0.9760 0.9815

15 0.9468 0.9292 0.9263 0.9273 0.9379 0.9485 0.9649
25 0.8997 0.8691 0.8620 0.8625 0.8833 0.9113 0.9534

Table 5: Frequency that the Simpson Winner is the Dodgson Winner

# Agents

#
A

lte
rn

at
iv

es
x 3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9433 0.9307 0.9339 0.9398 0.9493 0.9575 0.9714
7 0.8734 0.8627 0.8689 0.8786 0.9018 0.9153 0.9404
9 0.8256 0.8153 0.8167 0.8251 0.8562 0.8808 0.9124

25 0.5895 0.5772 0.6147 0.6322 0.7114 0.7529 0.7957

Table 6: Number of Occurrences per 1000 Elections that the Simpson Winner is Not the Dodgson
Winner. (Limit as n → ∞)

#Alternatives 3 4 5 6 7 8
#(DO 6= SI) per 1000 0 6.81 17.18 27 39.33 50.18
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Let P be our profile with m alternatives A and n agents. Say a and b are two distinct alterna-
tives in the set A. Say V = (v1, v2, . . . , vm!/2) is an ordered set of possible linear orders where
a is ranked above b. Note that {v1, v̄1, v2, v̄2, . . . , vm!/2, v̄m!/2} is the set L(A) of all possible linear
orders of A. We define a random vector X on a randomly selected random linear order v such that

Xi =











1 if v = vi

−1 if v = v̄i

0 otherwise

We likewise define an ordered set X = {X1, X2, . . . , Xn}, where X i is the random vector de-
fined on the ith linear order in P . The random vectors are independently identically distributed
(i.i.d.) with means of 0, and covariance matrix Ω = rI where r is some real number greater
than 0 and I is the identity matrix. By the multivariate central limit theorem, we know that
Y =

∑n
i=1 Xi/

√
n converges to an N(0, rI) multivariate normal distribution. Hence we may

easily model Y1, Y2, . . . , Yn as i.i.d. univariate normally distributed variables.
Using this model we performed 100,000 simulations and generate Table 6.
Note that as the number of agents approaches infinity, the probability of a tie approaches 0, and

so tie breaking is irrelevant in this table. In Table 6, we see that even with an infinite number of
voters, the Simpson rule is not especially close to the Dodgson rule.

7 Conclusion

In Section 1 we discussed the history of voting theory and various important theorems. One of
these theorems, the McGarvey theorem is very useful in the study of C1 voting rules. Unfortu-
nately this theorem was of no use to us since we consider only C2 and C3 rules. In Section 2 we
defined the Social Choice Functions and related concepts needed for this papers.

In Section 3 we presented a proof of a McGarvey theorem for weighted tournaments; we proved
that a weighted tournament is the weighted majority relation of some society if and only if all the
weights have the same parity. Although this result was probably originally proven by Debord
(1987), we presented an independent proof as we did not have access to Debord’s thesis. This
generalisation was very useful in simplifying the proofs in Section 5. It appears that this generali-
sation is as useful in the study of C2 voting rules as the original McGarvey theorem is in studying
C1 voting rules.

In Section 4 we proved that under the impartial culture assumption, the probability that our
new approximation Dodgson Quick chose the Dodgson winner converged to 1 exponentially fast
as we increase the number of agents. In Section 5 we proved that the Tideman rule also converged
to the Dodgson rule, but would not converge exponentially fast unless the number of agents was
even.

In Section 6 we presented numerical results demonstrating the rapid convergence of our new
approximation Dodgson Quick to the true Dodgson rule, as we increase the number of agents. Al-
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though we suspected that the Simpson rule would also converge to the Dodgson rule, we showed
numerically that the Simpson rule does not converge to the Dodgson rule. For a large number of
alternative, the Simpson rule is a particularly poor approximation to the Dodgson rule. (Simpson’s
rule was not intended as an approximation to Dodgson’s rule)
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