GENERALIZED CONVEXITY AND INEQUALITIES
G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN

ABSTRACT. Several convexity properties are studied, with appli-
cations to power series, in particular to hypergeometric and related
functions.

1. INTRODUCTION

In this paper we study several convexity and monotonicity proper-
ties of certain functions and deduce sharp inequalities. We deduce
analogous results for certain power series, especially hypergeometric
functions. This work continues studies in [ABRVV], [B1], and [B2].

The following result [HVV, Theorem 4.3], a variant of a result by
Biernacki and Krzyz [BK], will be very useful in studying convexity
and monotonicity of certain power series.

1.1. Lemma. For 0 < R < oo, let Y >° ja,z” and > - b,z" be two
real power series converging on the interval (—R, R). If the sequence
{an/b,} is increasing (decreasing), and b, > 0 for all n, then the func-

tion ZOO
P
flo) = S50
Yoot

is also increasing (decreasing) on (0, R). In fact, the function

f'() (Z bmc")

has positive Maclaurin coefficients.

1.2. Notation. If f(z) = Y " a,2™ and g(z) = Y .~ b,a™ are two
power series, where b, > 0 for all n, we let T,, = T,,(f(z), g(x)) = a/b,.
We will use F' = F(a,b;c;x) to denote the Gaussian hypergeometric

function

= (a,n)(b,n
F(aa b7 G ZE) - 2F1<(l, b7 G l’) = Z L(")x”7 |l’| < ]-7
—~ (c,n)n!
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where (a,n) denotes the product a(a + 1)(a +2)---(a +n — 1) when
n > 1, and (a,0) = 1 if @ # 0. The expression (0,0) is not defined. By
including more numerator and denominator parameters we can consider
the generalized hypergeometric function

H ak7
oFy(2) = pFy(ar, ... ap; by, ... 0 —1+Z k=1 ~ ) n" lz] < 1,

where no denominator parameter by is zero or a negative integer.

Particularly interesting hypergeometric functions are the complete
elliptic integrals of the first and second kind, defined respectively by

and
T 11
=_F(==.2:1: 2 1 /
8(1‘) 92 < 2797 755)7 8(1’) 8(1‘),

for x € (0,1).
Throughout this note, for x € (0,1) we denote 2’ = /1 — z2.

2. GENERALIZED CONVEXITY

The notions of convexity and concavity of a real function of a real
variable are well known [RV]. In this section we study certain general-
izations of these notions for a positive function of a positive variable.

2.1. Definition. A function M : (0,00) x (0,00) — (0,00) is called a
Mean function if

(1) M(z,y) = M(y,z),

(2) M(z,z) =z,

(3) x < M(z,y) <y, whenever x < vy,
(4) M(azx,ay) = aM(z,y) for all a > 0

(1) M(z,y) = A(z,y) = (z +y)/2 is the Arithmetic Mean.

(2) M(x,y) =G(x,y) = /oy is the Geometric Mean.

(3) M(z,y) = H(x,y) =1/A(1/z,1/y) is the Harmonic Mean.

(4) M(z,y) = L(z,y) = (z —y)/(logz —logy) for = # y, and

L(z,x) = x, is the Logarithmic Mean.
(5) M(2,9) = I(z,9) = (1/e) (* /y) @ for & £ y, and I(z,z) =

x, is the Identric Mean.
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2.3. Definition. Let f : I — (0,00) be continuous, where I is a subin-
terval of (0,00). Let M and N be any two Mean functions. We say
fis M N-convex (concave) if f(M(z,y)) < (>) N(f(x), f(y)), for all
x,y € 1.

Note that this definition reduces to usual convexity (concavity) when
M = N = A. We now show that for M, N = A, G, H, the nine possi-
ble M N-convexity (concavity) properties reduce to ordinary convexity
(concavity) by a simple change of variable.

2.4. Theorem. Let I be an open subinterval of (0,00) and let f: I —
(0,00) be continuous. In parts (4) — (9), let 7 = (0,b), 0 < b < 0.

) fis AA-convex (concave) if and only if f is convex (concave).

) fis AG-convex (concave) if and only if log f is convex (concave).

) fis AH-convex (concave) if and only if 1/ f is concave (convex).

) fis GG-convex (concave) on I if and only if log f(be™) is convex

(concave) on (0, c0).

(5) f is GA-convex (concave) on [ if and only if f(be™") is convex
(concave) on (0, 00).

(6) fis GH-convex (concave) on I if and only if 1/ f(be™) is concave
(convex) on (0, 00).

(7) f is HA-convex (concave) on [ if and only if f(1/z) is convex
(concave) on (1/b,00).

(8) fis HG-convex (concave) on [ if and only if log f(1/z) is convex
(concave) on (1/b,00).

(9) fis HH-convex (concave) on [ if and only if 1/f(1/x) is concave

(convex) on (1/b,00).

Proof. (1) This follows by definition.
(2)
f(A(z,y)) < (2) G(f(2), f(y))

(1

(2
(3
(4

— 10gf< Ty ) <(>) %(logf(x)ﬂogf(y)%

hence the result.
(3)
f(A(z,y)) < (=) H(f(z), f(y))

= 1(5H) <@ 20/sw + s
= YF (a4 )/2) 2 (<) 50/F@) + 1/ ),



G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN

hence the result.
(4) With o = be™" and y = be*,

F(G(z,y) < () G(f(2), f(y))
— log f(be™U"F9%) < (>) %(log f(be™) + log f(be™)),

hence the result.
(5) With z = be™" and y = be™*,

HG(z,y) < (2) A(f(2) + f(y))

— f(b —(r+s) /2) S (Z)

—_

= (f(be) + Fbe™))

hence the result.
(6) With z = be™" and y = be™*,

F(Glry) < () H(F @), f(3)
= e CI) > (<) S(1/5(be ) +1/F (b)),

hence the result.
(7) Let g(x) = f(1/z), and let z,y € (1/b,00), so that 1/x,1/y €
(0,b0). Then f is HA-convex (concave) on (0,b) if and only if

2
155 ) <@ a0/ + f0/m)

r+y

= o( ) <) 3o+ 900)
hence the result.
(8) Let g(x) = log f(1/z), and let z,y € (1/b,0), so 1/x,1/y €
(0,b). Then f is HG-convex (concave) on (0,b) if and only if
1(55) < @) VI
> log f((2/(x +))) < (=) (1/2)(log f(1/x) + log f(1/y))

= ("5) < @) 300 + s,

hence the result.
(9) Let g(z) = 1/f(1/x), and let x,y € (1/b,00), so 1/z,1/y €
(0,b). Then f is HH-convex (concave) on (0,b) if and only if
2
1(55,) = @2 v ysam)
= 1/f2/(z+y)) = () 5(1/f(1/$) +1/f(1/y))

= o () 2 () 3ol + 900)
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hence the result.

The next result is an immediate consequence of Theorem 2.4.

2.5. Corollary. Let I be an open subinterval of (0,00) and let f: [ —
(0, 00) be differentiable. In parts (4) — (9), let I = (0,b0), 0 < b < 0.

(1) f is AA-convex (concave) if and only if f'(x) is increasing (de-
creasing).

(2) fis AG-convex (concave) if and only if f'(x)/f(x) is increasing
(decreasing).

(3) fis AH-convex (concave) if and only if f'(z)/f(x)? is increasing
(decreasing).

(4) fis GG-convex (concave) if and only if x f'(x)/ f(x) is increasing
(decreasing).

(5) f is GA-convex (concave) if and only if xf'(x) is increasing
(decreasing).

(6) f is GH-convex (concave) if and only if z f'(x)/ f(x)? is increas-
ing (decreasing).

(7) f is HA-convex (concave) if and only if z2f’(z) is increasing
(decreasing).

(8) f is HG-convex (concave) if and only if 22 f'(x)/ f(z) is increas-
ing (decreasing).

(9) f is HH-convex (concave) if and only if 22f'(x)/f(z)? is in-
creasing (decreasing).

2.6. Remark. Since H(z,y) < G(x,y) < A(z,y), it follows that

(1) fis AH-convex = f is AG-convex = f is AA-convex.
(2) fis GH-convex = f is GG-convex = f is G'A-convex.
(3) fis HH-convex = f is HG-convex = f is H A-convex.

Further, if f is increasing (decreasing) then AN-convex (concave) im-
plies GN-convex (concave) implies H N-convex (concave), where N =
A,G,H. For concavity, the implications in (1), (2), and (3) are re-
versed. These implications are strict, as shown by the examples below.

2.7. Examples.
(1) f(x) = coshzx is AG-convex, but not AH-convex, nor GH-
convex, nor H H-convex.
(2) f(z) =sinhz is AA-convex, but not AG-convex on (0, c0).
(3) f(z) =secx is AH-convex on (0,7/2).
(4) f(z) = tanx is AA-convex, but not AG-convex on (0,7/2).
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3. APPLICATIONS TO POWER SERIES

3.1. Theorem. Let f(z) =Y " a,x", where a,, >0 forn =0,1,2,...,
be convergent on (—R, R), 0 < R < co. Then the following convexity
results hold.

(1) fis AA-convex, GG-convex, G A-convex, H A-convex, and HG-
convex on (0, R).

(2) If the sequence {(n+1)a,+1/a,} is increasing (decreasing), then
the function f’(z)/f(x) is increasing (decreasing) on (0, R), so
that the function log f(z) is convex (concave) on (0,R). In
particular,

1(55Y) = @ Vi

for all z,y € (0, R), with equality if and only if z = y.

(3) Let b, = > 1y akan_i. If the sequence (n + 1)a,i1/by, is in-
creasing (decreasing), then f is AH-convex (concave) on (0, R).

(4) Let b, = >_p_garan_k. If the sequence na,/b, is increasing,
then f is GH-convex and H H-convex on (0, R).

(5) If the sequence { R(n+1)an41/a,—n} is increasing (decreasing),
then the function (R—z) f'(x)/ f(z) is increasing (decreasing) on
(0, R), so that the function log f(R(1—e™")) is convex (concave)

n (0,00). In particular

F@)f(y) = (<) F(R= V(R -a)(R~y))

for all z,y € (0, R), with equality if and only if x = y.

(6) If the sequence {na,R"} is increasing (decreasing), then the
function (R — z)f’(z) is increasing (decreasing) on (0, R), so
that the function f(R(1—e™")) is convex (concave) as a function
of t on (0,00). In particular,

f@)+ fy)

f(R—VE=D(R=y)) < (z) TR,

for all z,y € (0, R), with equality if and only if z = y.
(7) The function zf'(z)/f(x) is increasing on (0, R), so that the
function log f(Re™") is convex on (0, 00). In particular,

f(Way) <V f(@)f(y),

for all =,y € (0, R), with equality if and only if z = y.

(8) If the sequence {na,R"} is increasing and if also the sequence
{nla,R"/(1/2,n)} is decreasing, then the function 1/f(Re™") is
concave on (0,00). In particular,

21 () £ (3)
TV < Ty Fy

for all z,y € (0,1), with equality if and only if x = y.
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Proof.
(1) This is obvious.

(2) (d/dx)log f(x) = f'(x)/f(x), so that
To(f (), F(@)) = (0 + Dansr /an,

which is increasing (decreasing). Thus, by Lemma 1.1 and
Corollary 2.5(2) the assertion follows.

(3) Since Tn(f'(x), f(x)*) = (n + 1)ani1b,, the result follows by
Lemma 1.1 and Corollary 2.5(3).

(4) Since T),(zf'(x), f(x)?) = na, /by, the result follows by Lemma
1.1 and Corollary 2.5(6).

(5)

d iy ot (B(1—e€™") f'(z)

alogf(R(l —e ")) =Re FROI=c7) ~ (R—x)
where x = R(1 — e™"). Then

T.((R —2)f'(x), f(x)) = R(n + L)ans1/an — n,

which is increasing (decreasing), so that the assertion follows by
Lemma 1.1.

(6) (d/dt)f(R(1 —e")) = Re™" f'(R(1 —e™")) = (R —x)f'(x) =
f'()/(1/(R — x)), where x = R(1 — e~"). Then,

To(f'(2),1/(R = 2)) = (n + Dan R,

which is increasing (decreasing) by hypothesis, so that the as-

sertion follows by Lemma 1.1.
(7) First,

d - ' (Be™) f'(z)

_1 t — _ tJ \"V J —_ _ — —h

o og f(Re™) Re F(Re xf(a:) (),
say, with © = Re™". Next, T,,(zf'(z), f(x)) = n, which is triv-
ially increasing. Thus h(x) is increasing in x on (0,1), and
(d/dt)log f(Re™") is increasing in ¢ on (0, 00). Thus, log f(Re™")

is strictly convex in ¢t on (0, 00). In particular,

log f (Re’(”sw) < % (log f(Re™™) + log f(Re’s)) ,

for all r, s € (0, 00), with equality if and only if r = s. If we set
x = Re ™, y = Re™*, this simplifies to

f(Vry) <V f(@)fy),
for all z,y € (0, R), with equality if and only if z = y.
(8)
d 1 Re7'f'(Re™)  af'(x)

dt f(Re™) — (f(Re )2 (f(2))*
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where z = Re™". Now (R—x)f'(z) = f'(x)/[1/(R— )], so that

T,(f'(x),1/(R—2)) = (n+ Da, 1 R",

which is increasing by hypothesis. Hence, (R — z)f'(x) is in-
creasing on (0, R), by Lemma 1.1. Since

VR —zf(x) = f(z)/(R—z)""/?,
we have

nla, R"+1/2
(1/2,n)
which is decreasing by hypothesis. Hence, vV R — xf(x) is also

decreasing on (0, R), by Lemma 1.1. Thus (d/dt)[1/f(R(e™"))]
is decreasing on (0, c0), proving the required assertion.

To(f(x), (R —2)7'?) =

O

3.2. Theorem. Let F(z) = F(a,b;c;x), for a,b,c > 0 and |z| < 1. Then
the following results hold.

(1) If ab/(a + b+ 1) < ¢, then logF ) is convex on (0,1). In
particular, F'((x +y)/2) < /F , for all z,y € (0,1),
with equality if and only if ¢ = y

(2) If (a —¢)(b—¢) > 0, then log F(1 — e™*) is concave on (0, 00).
In particular, /F(2)F(y) < F(1 — /(1 —x)(1 —y)), for all
z,y € (0,1), with equality if and only if z = y.

(3) If a+b > ¢, then F(1 —e™") is convex on (0,00). In particular,

Fl—/(1—2)(1—y)) < (F(z)+ F(y))/2 for all z,y € (0, 1),
with equality iff z = y.

Proof. ; (1) T.,(F'(x), F(z)) = (n+1)apy1/an = (a+n)(b+n)/(c+n).
Thi1—T,>0 <= (a+n+1)(b+n+1)(c+n)
—(a+n)(b+n)(c+n+1)>0
< (a+n)(c+n)+ (b+n)(c+n)+ (c+n)
—(a+n)(b+n)>0
< n’+n(2c+1)+ (ac+bc+c—ab) >0
—ab/(a+b+1)<c

Hence, the assertion follows from Theorem 3.1(1).
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(n+ 1)an+1
T _
(a+mn)(b+n)

N c+n B

(1= 2)F(x), F(z)) =

(a—c)(b—c)
c+n

which is decreasing if and only if (a —¢)(b — ¢) > 0, so that the
assertion follows from Theorem 3.1(2).

(3) Tna(F'(2),1/(1 = x)) = nan = (a,n)(b;n)/[(c,n)(n — 1)1,

Hence,

=a+b—c+

Y

~ (a,n+1)(b,n+1) (a,n)(b,n)
Tn - Tn_l - (c’n + 1)71' a (C7 n)(n - 1)'

 (@n)bn)
~ (e,n+1)n!
< n(a+b—c)+ab>0foraln
<~ a+b>c

[(a+n)(b+n)—n(c+n)] >0
Hence, the assertion follows from Theorem 3.1(3).

3.3. Theorem. (cf. [BPV, Lemma 2.1]). Let F(z) = F(a,b;c;z), with
c=a+b,a,b>0,and |z| < 1. Then

(1) log F(x) is convex on (0, 1),

(2) log F(1 —e™") is concave on (0, c0),

(3) F(1 —e™") is convex on (0,00).

In particular,

F(55Y) < VFOFG) < FO - VT o) < -0 Y

for all z,y € (0,1), with equality if and only if x = y.

Proof. This result follows immediately from Theorem 3.2. 0J

3.4. Theorem. Let a,b,c > 0, a,b € (0,1) and a < ¢,b < ¢. Let F
and F be the conjugate hypergeometric functions on (0, 1) defined by
F = F(z) = F(a,b;c;x) and Fy; = Fy(z) = F(1—x). Then the function
f defined by f(z) = z(1 — z)F(x)Fi(z) is increasing on (0,1/2] and
decreasing on [1/2,1).
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Proof. Since f(z) = f(1 — z), it is enough to prove the assertion on
(0,1/2]. Following Rainville [R, p. 51] we let F'(a—) = F(a — 1,b; ¢; z)
and Fi(a—) = Fi(a — 1,b;c; ). Now, since
z(l—2)F'(z) = (c—a)F(a—) + (a — ¢+ bx)F
[AQVV, Theorem 3.12(2)], we have
f'(w) = 2(1 = 2)[F'(x) Fy(z) + F(2) F{(2)] + (1 = 22) F (z) Fy(x)
=[(c—a)F(a—)F| — (c — a — bx)FFi]
—[(c—a)Fi(a—)F — (c—a—b(1 —x)) [} F]
= (c—a)[F(a—)F, — Fi(a—)F] + (1 — 2x)(1 — b) F'F}.

Since Fy(a—)F is increasing on (0, 1), it follows that f'(x) is positive
on (0,1/2) and negative on (1/2,1). O

3.5. Corollary. Let f(x) = x*2? X (x) K(z'). Then f(z) is increasing on
(0,1/4/2] and decreasing on [y/1/2,1), with

1 2
max f(z) = f( 1/2) =3 <J<( 1/2)) — 0.859398 . ...

0<z<1

Proof. This follows from Theorem 3.4, if we take a = b = 1/2,¢ = 1,
and replace x by z2. O

3.6. Theorem. Let F(x) = F(a,b;c;x), with a,b,c > 0 and |z| < 1. If
a+b>c>2aband ¢ > a+b—1/2, then 1/F(e™") is concave on (0, 00).
In particular,
2F () F(y)
F(Vay) < ————F
VIS Byt E)

for all z,y € (0,1), with equality if and only if x = y.
Proof. Here a,, the coefficient of 2", is (a,n)(b,n)/[(c,n)n!], so that

na, = (a,n)(b,n)/[(c,n)(n — 1)!].
This is increasing if and only if n(a + b — ¢) 4+ ab > 0, which is true if
a+b>c. Next,
nla, 2"(a,n)(b,n)
T, o1 1- = = )
F@ V=) = Gy = ) 1-3 - @n—1)

which is decreasing if and only if 2n(a +b — ¢ —1/2) 4+ (2ab — ¢) < 0,
which is satisfied if @ +b — 1/2 < ¢ and 2ab < ¢. Hence, the assertion
follows from Theorem 3.1(e). O
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3.7. Theorem. (cf. [B2, (1.12) and Remark 1.13] Let F(z) denote the
hypergeometric function F'(a,b;a + b;x), with a,b € (0,1] and |z| < 1.
Then 1/F(e™") is concave on (0,00). In particular,

2F () F(y)
F(Vry) < F@) + F)

for all z,y € (0,1), with equality if and only if x = y.

Proof. In this case ¢ = a+ b, and ¢ — 2ab = a(1 — b) + b(1 —a) > 0, so
that the assertion follows from Theorem 3.6. O

The next result improves [B2, Theorem 1.25].

3.8. Theorem. Let f(z) = >~ b,a", where b, = (—c/4)"/[n!(k,n)],
k=p+ (b+1)/2, as in [B2], be the generalized-normalized Bessel
function of the first kind of order p. Let ¢ < 0 and £ > 0. Then

(1) log f(Re™)) is convex on (0, 00), so that f(\/zy) < \/f(x)f(y)

for all z,y € (0, 00), with equality if and only if z = y.

(2) log f(x) is concave on (0, 00), so that / f(z)f(y) < f((z+y)/2)

for all z,y € (0, 00), with equality if and only if z = y.
(3) f(x) is convex on (0, 00), so that

f(z+y)/2) < (1/2)(f(z) + f(y))
for all z,y € (0, 00), with equality if and only if = = y.
(4) Itk > —1—cR/4, then f(R(1—e™")) is concave on (0, 00), so that

(f(@)+f(y)/2 < fF(R—\/(R—2)(R—y)) forall z,y € (0, R),
with equality if and only if x = y.

Proof. By the ratio test, the radius of convergence of the series for f(x)
is o0.
(1) This follows from Theorem 3.1(4).
(2) T.(f'(z), f(z)) = (n + 1)bpy1/bn = (—c/4)/(k 4+ n), which is
decreasing; hence the result follows from Theorem 3.1(1).
(3) This is obvious, since b, > 0 for all n.

(4) Since
To(f' (), 1/(R = 2)) = (n4 )by R™ = (=cR/4)" /[nl(k, n + 1)]
and k > —1 — cR/4, we have

T (eR) [+ (1) < L

Hence, the result follows from Theorem 3.1(3).
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3.9. Remark. For 0 < z <y, let y/x = exp(2v/1), t € (0,00), and let

r+y

y—x
G =/ L =————— and A =
(z,y) vy, L(z,y) log y — log ) a (. y) 5

denote the Geometric Mean, Logarithmic Mean, and Arithmetic Mean
of z and y, respectively. Then

L(z,y)  sinh(V?) _ i "

G(z,vy) Vit c~ (2n+ 1)1
Al@,y) = CoS = N A
Gla.) ~ YD = 2

Hence, it will be interesting to study the convexity properties of these
two functions.

3.10. Corollary. (cf. [B2, Corollary 1.26])
(1)

cosh(y/zy) < v/(cosh x)(cosh y)
< cosh ( (% + y2)/2>

1
< §(cosh:c + cosh y)

for all z,y € (0, 00), with equality if and only if z = y.

(2)
%(coshx + coshy) < cosh <\/R — \/(R —2?)(R — 92))

for 0 < R < 6 and all z,y € (0,VR), with equality if and only
if v =y.

sinh(,/Zy) < sinhz sinhy
/Ty o x Y

sinh /% (2% + y?)

<
5(@% +97)
1 (Sinhx sinh y)
<= +
-2 T Y

for all =,y € (0,00), with equality if and only if z = y.
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(4)

sinh (\/R — JR-DER- y2)>
<
VR VE— )R~

for 0 < R < 10 and all 2,y € (0, v R), with equality if and only
ifer=uy.

1 <sinh x  sinh y)
= +
2 x Y

(1) In Theorem 3.8, let b = 1, ¢ = —1, and p = —1/2.
Then f(2?) = coshx, and the result follows from Theorem
3.8(1),(2),(3) if we replace x and y by x? and y?, respectively.

(2) In Theorem 3.8, take b = 1, ¢ = —1, and p = —1/2. Then

To(f'(x),1/(R = x)) = (n + 1)an1 R™, so
Toyr  (n+2)R2n+2)! R
T, (n+1)2n+4)!  2(n+1)2n+3)
which is less than 1 if and only if R < min,>q2(n+1)(2n+3) =

6. So the result follows from Theorem 3.8(4) if we replace x and
y by 2% and y?, respectively.

(3) In Theorem 3.8, take b = 1, ¢ = —1, and p = 1/2. Then

f(z?) = (sinhx)/z, and the result again follows from Theorem
3.8(1),(2),(3), if we replace z and y by z? and y?, respectively.

(4) In Theorem 3.8, take b = 1, ¢ = —1, and p = 1/2. Then, with

3.11.

T.(f'(x),1/(R — x)) = (n+ 1)a, 1 R", we have T,,.1/T, =
R/[2(n + 1)(2n + 5)], which is less than 1 for n > 0 if and only
if R < min,>o2(n+1)(2n+5) = 10. So the result follows from

Theorem 3.8(4) if we replace x and y by z? and 32, respectively.
OJ

Remark. Computer experiments show that in Corollary 3.10(2)

the bound R < 6 cannot be replaced by R < 7 and that in Corollary
3.10(4) the bound R < 10 cannot be replaced by R < 11.

3.12.

Theorem. For 0 < R < oo, let f(z) = > 07 a2, a, > 0,

be convergent on (—R,R). Let m = my be the function defined by

m(z)

= f(R—2?/R)/f(z*/R). If the sequence {R(n + 1)a,1/a, —n}

is decreasing, then

L <
m(/(R =) (R2 = y?)

m(z)m(y) < m(y/zy)

for all z,y € (0, R), with equality if and only if z = y.
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Proof. By Theorem 3.1(2),(4), we have
FVzy) </ f(2)fly) < F(R = /(R —2)(R—y))

for all x,y € (0, R), with equality if and only if x = y. If we change
x,y to (i) 22/R, y*/R and (ii) R — 2*/R, R — y*/R, respectively, then

flzy/R) < \/f(2*/R)f(y*/R)
< f(R= /(R —22/R)(R—?/R))

and

F(V(R—2?/R)(R—12/R)) < \/f(R—2*/R)f(R — y*/R)
for all z,y € (0, R), with equality if and only if z = y. The result
follows if we divide the second chain of inequalities by the first. OJ

We may extend some of the previous results on log-convexity to the
generalized hypergeometric function. For non-negative integers p, ¢, let
ai,...ap,b1,..., b, be positive numbers and let F(x) = ,F,(x) be the
generalized hypergeometric function defined on (—1,1) as in Section
1.2 (Notations).

3.13. Theorem. (1) If p=q =0, then F(x) = e, which is trivially
log-convex.

(2) Let p = ¢ > 1. If a < by for each k, with at least one strict
inequality, then F' is strictly log-convex on (0,1). If ax > by,
with at least one strict inequality, then F'is strictly log-concave
on (0,1).

(3) If p > q and a; < b, with at least one strict inequality, for
k=1,2,...,q, then F is strictly log-convex on (0, 1).

(4) If 1 < p < q and a, > by, with at least one strict inequality, for
k=1,2,...,p, then F is strictly log-concave on (0, 1).

(5) If p=0, and ¢ > 1, then F is log-concave.

Proof. For (1), F(x) =3 7 x"/n! =€, hence the result.

In case (2),

Bay+n ap+n
CAbi+n by+n’
where A = ay---a, and B = by---b,. Clearly, a ratio of the form
(a +n)/(b+ n) is increasing or decreasing in n according as a < b or
a > b. Hence, F'(x)/F(x) is increasing or decreasing as asserted, and
the result follows.

(3) Asin case (2), if p > ¢ > 1, each ratio of the form (ax+n)/(bx+n)
is increasing, with at least one strictly, hence so is F'(x)/F(x). Next,
if g =0 and p > 0, then T,,(F'(x), F(x)) = (a1 +n)(ag +n) - - - (ap, +n),

T,(F'(x), F(x))
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which is clearly increasing, so that F’(z)/F(x) is also increasing on
(0,1). Thus F is log-convex.

(4) As in case (2), each ratio of the form (ax+n)/(bp+n) is decreasing,
with at least one strictly, hence so is F'(z)/F(x).

(5) Here, T,,(F'(z), F(x)) = 1/[(n 4+ b1)(n + ba)...(n + by)], which is
clearly decreasing. O
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