
GENERALIZED CONVEXITY AND INEQUALITIES

G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN

Abstract. Several convexity properties are studied, with appli-
cations to power series, in particular to hypergeometric and related
functions.

1. Introduction

In this paper we study several convexity and monotonicity proper-
ties of certain functions and deduce sharp inequalities. We deduce
analogous results for certain power series, especially hypergeometric
functions. This work continues studies in [ABRVV], [B1], and [B2].

The following result [HVV, Theorem 4.3], a variant of a result by
Biernacki and Krzyż [BK], will be very useful in studying convexity
and monotonicity of certain power series.

1.1. Lemma. For 0 < R ≤ ∞, let
∑∞

n=0 anx
n and

∑∞
n=0 bnx

n be two
real power series converging on the interval (−R,R). If the sequence
{an/bn} is increasing (decreasing), and bn > 0 for all n, then the func-
tion

f(x) =

∑∞
n=0 anx

n∑∞
n=0 bnxn

is also increasing (decreasing) on (0, R). In fact, the function

f ′(x)

(
∞∑

n=0

bnx
n

)2

has positive Maclaurin coefficients.

1.2. Notation. If f(x) =
∑∞

n=0 anx
n and g(x) =

∑∞
n=0 bnx

n are two
power series, where bn > 0 for all n, we let Tn = Tn(f(x), g(x)) = an/bn.
We will use F = F (a, b; c; x) to denote the Gaussian hypergeometric
function

F (a, b; c; x) = 2F1(a, b; c; x) =
∞∑

n=0

(a, n)(b, n)

(c, n)n!
xn, |x| < 1,
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where (a, n) denotes the product a(a + 1)(a + 2) · · · (a + n − 1) when
n ≥ 1, and (a, 0) = 1 if a 6= 0. The expression (0, 0) is not defined. By
including more numerator and denominator parameters we can consider
the generalized hypergeometric function

pFq(x) = pFq(a1, . . . , ap; b1, . . . bq; x) = 1+
∞∑

n=1

∏p
k=1(ak, n)∏q
k=1(bk, n)

xn

n!
, |x| < 1,

where no denominator parameter bk is zero or a negative integer.

Particularly interesting hypergeometric functions are the complete
elliptic integrals of the first and second kind, defined respectively by

K(x) =
π

2
F

(
1

2
,
1

2
; 1; x2

)
, K

′(x) = K(x′),

and

E(x) =
π

2
F

(
−1

2
,
1

2
; 1; x2

)
, E

′(x) = E(x′),

for x ∈ (0, 1).
Throughout this note, for x ∈ (0, 1) we denote x′ =

√
1− x2.

2. Generalized convexity

The notions of convexity and concavity of a real function of a real
variable are well known [RV]. In this section we study certain general-
izations of these notions for a positive function of a positive variable.

2.1. Definition. A function M : (0,∞) × (0,∞) → (0,∞) is called a
Mean function if

(1) M(x, y) = M(y, x),
(2) M(x, x) = x,
(3) x < M(x, y) < y, whenever x < y,
(4) M(ax, ay) = aM(x, y) for all a > 0.

2.2. Examples. [VV]

(1) M(x, y) = A(x, y) = (x + y)/2 is the Arithmetic Mean.
(2) M(x, y) = G(x, y) =

√
xy is the Geometric Mean.

(3) M(x, y) = H(x, y) = 1/A(1/x, 1/y) is the Harmonic Mean.
(4) M(x, y) = L(x, y) = (x − y)/(log x − log y) for x 6= y, and

L(x, x) = x, is the Logarithmic Mean.
(5) M(x, y) = I(x, y) = (1/e)(xx/yy)1/(x−y) for x 6= y, and I(x, x) =

x, is the Identric Mean.
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2.3. Definition. Let f : I → (0,∞) be continuous, where I is a subin-
terval of (0,∞). Let M and N be any two Mean functions. We say
f is MN -convex (concave) if f(M(x, y)) ≤ (≥) N(f(x), f(y)), for all
x, y ∈ I.

Note that this definition reduces to usual convexity (concavity) when
M = N = A. We now show that for M, N = A, G, H, the nine possi-
ble MN -convexity (concavity) properties reduce to ordinary convexity
(concavity) by a simple change of variable.

2.4. Theorem. Let I be an open subinterval of (0,∞) and let f : I →
(0,∞) be continuous. In parts (4)− (9), let I = (0, b), 0 < b < ∞.

(1) f is AA-convex (concave) if and only if f is convex (concave).
(2) f is AG-convex (concave) if and only if log f is convex (concave).
(3) f is AH-convex (concave) if and only if 1/f is concave (convex).
(4) f is GG-convex (concave) on I if and only if log f(be−t) is convex

(concave) on (0,∞).
(5) f is GA-convex (concave) on I if and only if f(be−t) is convex

(concave) on (0,∞).
(6) f is GH-convex (concave) on I if and only if 1/f(be−t) is concave

(convex) on (0,∞).
(7) f is HA-convex (concave) on I if and only if f(1/x) is convex

(concave) on (1/b,∞).
(8) f is HG-convex (concave) on I if and only if log f(1/x) is convex

(concave) on (1/b,∞).
(9) f is HH-convex (concave) on I if and only if 1/f(1/x) is concave

(convex) on (1/b,∞).

Proof. (1) This follows by definition.
(2)

f(A(x, y)) ≤ (≥) G(f(x), f(y))

⇐⇒ f

(
x + y

2

)
≤ (≥)

√
f(x)f(y)

⇐⇒ log f

(
x + y

2

)
≤ (≥)

1

2
(log f(x) + log f(y)) ,

hence the result.
(3)

f(A(x, y)) ≤ (≥) H(f(x), f(y))

⇐⇒ f

(
x + y

2

)
≤ (≥) 2/(1/f(x) + 1/f(y))

⇐⇒ 1/f ((x + y)/2) ≥ (≤)
1

2
(1/f(x) + 1/f(y)),
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hence the result.
(4) With x = be−r and y = be−s,

f(G(x, y)) ≤ (≥) G(f(x), f(y))

⇐⇒ log f(be−(r+s)/2) ≤ (≥)
1

2
(log f(be−r) + log f(be−s)),

hence the result.
(5) With x = be−r and y = be−s,

f(G(x, y)) ≤ (≥) A(f(x) + f(y))

⇐⇒ f
(
be−(r+s)/2

)
≤ (≥)

1

2

(
f(be−r) + f(be−s)

)
,

hence the result.
(6) With x = be−r and y = be−s,

f(G(x, y)) ≤ (≥) H(f(x), f(y))

⇐⇒ 1/f(be−(r+s)/2) ≥ (≤)
1

2
(1/f(be−r) + 1/f(be−s)),

hence the result.
(7) Let g(x) = f(1/x), and let x, y ∈ (1/b,∞), so that 1/x, 1/y ∈

(0, b). Then f is HA-convex (concave) on (0, b) if and only if

f

(
2

x + y

)
≤ (≥) (1/2)(f(1/x) + f(1/y))

⇐⇒ g

(
x + y

2

)
≤ (≥)

1

2
(g(x) + g(y)),

hence the result.
(8) Let g(x) = log f(1/x), and let x, y ∈ (1/b,∞), so 1/x, 1/y ∈

(0, b). Then f is HG-convex (concave) on (0, b) if and only if

f

(
2

x + y

)
≤ (≥)

√
f(1/x)f(1/y)

⇐⇒ log f((2/(x + y))) ≤ (≥) (1/2)(log f(1/x) + log f(1/y))

⇐⇒ g

(
x + y

2

)
≤ (≥)

1

2
(g(x) + g(y)),

hence the result.
(9) Let g(x) = 1/f(1/x), and let x, y ∈ (1/b,∞), so 1/x, 1/y ∈

(0, b). Then f is HH-convex (concave) on (0, b) if and only if

f

(
2

x + y

)
≤ (≥) 2/(1/f(1/x) + 1/f(1/y))

⇐⇒ 1/f(2/(x + y)) ≥ (≤)
1

2
(1/f(1/x) + 1/f(1/y))

⇐⇒ g

(
x + y

2

)
≥ (≤)

1

2
(g(x) + g(y)),
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hence the result.
�

The next result is an immediate consequence of Theorem 2.4.

2.5. Corollary. Let I be an open subinterval of (0,∞) and let f : I →
(0,∞) be differentiable. In parts (4)− (9), let I = (0, b), 0 < b < ∞.

(1) f is AA-convex (concave) if and only if f ′(x) is increasing (de-
creasing).

(2) f is AG-convex (concave) if and only if f ′(x)/f(x) is increasing
(decreasing).

(3) f is AH-convex (concave) if and only if f ′(x)/f(x)2 is increasing
(decreasing).

(4) f is GG-convex (concave) if and only if xf ′(x)/f(x) is increasing
(decreasing).

(5) f is GA-convex (concave) if and only if xf ′(x) is increasing
(decreasing).

(6) f is GH-convex (concave) if and only if xf ′(x)/f(x)2 is increas-
ing (decreasing).

(7) f is HA-convex (concave) if and only if x2f ′(x) is increasing
(decreasing).

(8) f is HG-convex (concave) if and only if x2f ′(x)/f(x) is increas-
ing (decreasing).

(9) f is HH-convex (concave) if and only if x2f ′(x)/f(x)2 is in-
creasing (decreasing).

2.6. Remark. Since H(x, y) ≤ G(x, y) ≤ A(x, y), it follows that

(1) f is AH-convex =⇒ f is AG-convex =⇒ f is AA-convex.
(2) f is GH-convex =⇒ f is GG-convex =⇒ f is GA-convex.
(3) f is HH-convex =⇒ f is HG-convex =⇒ f is HA-convex.

Further, if f is increasing (decreasing) then AN -convex (concave) im-
plies GN -convex (concave) implies HN -convex (concave), where N =
A, G, H. For concavity, the implications in (1), (2), and (3) are re-
versed. These implications are strict, as shown by the examples below.

2.7. Examples.
(1) f(x) = cosh x is AG-convex, but not AH-convex, nor GH-

convex, nor HH-convex.
(2) f(x) = sinh x is AA-convex, but not AG-convex on (0,∞).
(3) f(x) = sec x is AH-convex on (0, π/2).
(4) f(x) = tan x is AA-convex, but not AG-convex on (0, π/2).
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3. Applications to power series

3.1. Theorem. Let f(x) =
∑∞

n=0 anx
n, where an > 0 for n = 0, 1, 2, . . .,

be convergent on (−R,R), 0 < R < ∞. Then the following convexity
results hold.

(1) f is AA-convex, GG-convex, GA-convex, HA-convex, and HG-
convex on (0, R).

(2) If the sequence {(n+1)an+1/an} is increasing (decreasing), then
the function f ′(x)/f(x) is increasing (decreasing) on (0, R), so
that the function log f(x) is convex (concave) on (0, R). In
particular,

f

(
x + y

2

)
≤ (≥)

√
f(x)f(y)

for all x, y ∈ (0, R), with equality if and only if x = y.
(3) Let bn =

∑n
k=0 akan−k. If the sequence (n + 1)an+1/bn is in-

creasing (decreasing), then f is AH-convex (concave) on (0, R).
(4) Let bn =

∑n
k=0 akan−k. If the sequence nan/bn is increasing,

then f is GH-convex and HH-convex on (0, R).
(5) If the sequence {R(n+1)an+1/an−n} is increasing (decreasing),

then the function (R−x)f ′(x)/f(x) is increasing (decreasing) on
(0, R), so that the function log f(R(1−e−t)) is convex (concave)
on (0,∞). In particular,√

f(x)f(y) ≥ (≤) f(R−
√

(R− x)(R− y) )

for all x, y ∈ (0, R), with equality if and only if x = y.
(6) If the sequence {nanR

n} is increasing (decreasing), then the
function (R − x)f ′(x) is increasing (decreasing) on (0, R), so
that the function f(R(1−e−t)) is convex (concave) as a function
of t on (0,∞). In particular,

f(R−
√

(R− x)(R− y) ) ≤ (≥)
f(x) + f(y)

2
,

for all x, y ∈ (0, R), with equality if and only if x = y.
(7) The function xf ′(x)/f(x) is increasing on (0, R), so that the

function log f(Re−t) is convex on (0,∞). In particular,

f(
√

xy) ≤
√

f(x)f(y),

for all x, y ∈ (0, R), with equality if and only if x = y.
(8) If the sequence {nanR

n} is increasing and if also the sequence
{n!anR

n/(1/2, n)} is decreasing, then the function 1/f(Re−t) is
concave on (0,∞). In particular,

f(
√

xy) ≤ 2f(x)f(y)

f(x) + f(y)
,

for all x, y ∈ (0, 1), with equality if and only if x = y.
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Proof.
(1) This is obvious.
(2) (d/dx) log f(x) = f ′(x)/f(x), so that

Tn(f ′(x), f(x)) = (n + 1)an+1/an,

which is increasing (decreasing). Thus, by Lemma 1.1 and
Corollary 2.5(2) the assertion follows.

(3) Since Tn(f ′(x), f(x)2) = (n + 1)an+1bn, the result follows by
Lemma 1.1 and Corollary 2.5(3).

(4) Since Tn(xf ′(x), f(x)2) = nan/bn, the result follows by Lemma
1.1 and Corollary 2.5(6).

(5)

d

dt
log f(R(1− e−t)) = Re−t f

′(R(1− e−t))

f(R(1− e−t))
= (R− x)

f ′(x)

f(x)
,

where x = R(1− e−t). Then

Tn((R− x)f ′(x), f(x)) = R(n + 1)an+1/an − n,

which is increasing (decreasing), so that the assertion follows by
Lemma 1.1.

(6) (d/dt)f(R(1 − e−t)) = Re−tf ′(R(1 − e−t)) = (R − x)f ′(x) =
f ′(x)/(1/(R− x)), where x = R(1− e−t). Then,

Tn(f ′(x), 1/(R− x)) = (n + 1)an+1R
n+1,

which is increasing (decreasing) by hypothesis, so that the as-
sertion follows by Lemma 1.1.

(7) First,

d

dt
log f(Re−t) = −Re−t f

′(Re−t)

f(Re−t)
= −x

f ′(x)

f(x)
= −h(x),

say, with x = Re−t. Next, Tn(xf ′(x), f(x)) = n, which is triv-
ially increasing. Thus h(x) is increasing in x on (0, 1), and
(d/dt) log f(Re−t) is increasing in t on (0,∞). Thus, log f(Re−t)
is strictly convex in t on (0,∞). In particular,

log f
(
Re−(r+s)/2

)
≤ 1

2

(
log f(Re−r) + log f(Re−s)

)
,

for all r, s ∈ (0,∞), with equality if and only if r = s. If we set
x = Re−r, y = Re−s, this simplifies to

f(
√

xy) ≤
√

f(x)f(y),

for all x, y ∈ (0, R), with equality if and only if x = y.
(8)

d

dt

1

f(Re−t)
=

Re−tf ′(Re−t)

(f(Re−t))2
=

xf ′(x)

(f(x))2
,
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where x = Re−t. Now (R−x)f ′(x) = f ′(x)/[1/(R−x)], so that

Tn(f ′(x), 1/(R− x)) = (n + 1)an+1R
n−1,

which is increasing by hypothesis. Hence, (R − x)f ′(x) is in-
creasing on (0, R), by Lemma 1.1. Since

√
R− xf(x) = f(x)/(R− x)−1/2,

we have

Tn(f(x), (R− x)−1/2) =
n!anR

n+1/2

(1/2, n)
,

which is decreasing by hypothesis. Hence,
√

R− xf(x) is also
decreasing on (0, R), by Lemma 1.1. Thus (d/dt)[1/f(R(e−t))]
is decreasing on (0,∞), proving the required assertion.

�

3.2. Theorem. Let F (x) = F (a, b; c; x), for a, b, c > 0 and |x| < 1. Then
the following results hold.

(1) If ab/(a + b + 1) < c, then log F (x) is convex on (0, 1). In

particular, F ((x + y)/2) ≤
√

F (x)F (y), for all x, y ∈ (0, 1),
with equality if and only if x = y.

(2) If (a − c)(b − c) > 0, then log F (1 − e−t) is concave on (0,∞).

In particular,
√

F (x)F (y) ≤ F (1 −
√

(1− x)(1− y)), for all
x, y ∈ (0, 1), with equality if and only if x = y.

(3) If a + b ≥ c, then F (1− e−t) is convex on (0,∞). In particular,

F (1−
√

(1− x)(1− y)) ≤ (F (x) + F (y))/2 for all x, y ∈ (0, 1),
with equality iff x = y.

Proof. (1) Tn(F ′(x), F (x)) = (n+1)an+1/an = (a+n)(b+n)/(c+n).
Hence,

Tn+1 − Tn > 0 ⇐⇒ (a + n + 1)(b + n + 1)(c + n)

− (a + n)(b + n)(c + n + 1) > 0

⇐⇒ (a + n)(c + n) + (b + n)(c + n) + (c + n)

− (a + n)(b + n) > 0

⇐⇒ n2 + n(2c + 1) + (ac + bc + c− ab) > 0

⇐⇒ ab/(a + b + 1) < c.

Hence, the assertion follows from Theorem 3.1(1).
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(2)

Tn((1− x)F ′(x), F (x)) =
(n + 1)an+1

an

− n

=
(a + n)(b + n)

c + n
− n

= a + b− c +
(a− c)(b− c)

c + n
,

which is decreasing if and only if (a− c)(b− c) > 0, so that the
assertion follows from Theorem 3.1(2).

(3) Tn−1(F
′(x), 1/(1 − x)) = nan = (a, n)(b, n)/[(c, n)(n − 1)!].

Hence,

Tn − Tn−1 =
(a, n + 1)(b, n + 1)

(c, n + 1)n!
− (a, n)(b, n)

(c, n)(n− 1)!

=
(a, n)(b, n)

(c, n + 1)n!
[(a + n)(b + n)− n(c + n)] > 0

⇐⇒ n(a + b− c) + ab > 0 for all n

⇐⇒ a + b ≥ c.

Hence, the assertion follows from Theorem 3.1(3).
�

3.3. Theorem. (cf. [BPV, Lemma 2.1]). Let F (x) = F (a, b; c; x), with
c = a + b, a, b > 0, and |x| < 1. Then

(1) log F (x) is convex on (0, 1),
(2) log F (1− e−t) is concave on (0,∞),
(3) F (1− e−t) is convex on (0,∞).

In particular,

F

(
x + y

2

)
≤
√

F (x)F (y) ≤ F (1−
√

(1− x)(1− y)) ≤ F (x) + F (y)

2

for all x, y ∈ (0, 1), with equality if and only if x = y.

Proof. This result follows immediately from Theorem 3.2. �

3.4. Theorem. Let a, b, c > 0, a, b ∈ (0, 1) and a < c, b < c. Let F
and F1 be the conjugate hypergeometric functions on (0, 1) defined by
F = F (x) = F (a, b; c; x) and F1 = F1(x) = F (1−x). Then the function
f defined by f(x) = x(1 − x)F (x)F1(x) is increasing on (0, 1/2] and
decreasing on [1/2, 1).
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Proof. Since f(x) = f(1 − x), it is enough to prove the assertion on
(0, 1/2]. Following Rainville [R, p. 51] we let F (a−) = F (a− 1, b; c; x)
and F1(a−) = F1(a− 1, b; c; x). Now, since

x(1− x)F ′(x) = (c− a)F (a−) + (a− c + bx)F

[AQVV, Theorem 3.12(2)], we have

f ′(x) = x(1− x)[F ′(x)F1(x) + F (x)F ′
1(x)] + (1− 2x)F (x)F1(x)

= [(c− a)F (a−)F1 − (c− a− bx)FF1]

− [(c− a)F1(a−)F − (c− a− b(1− x))F1F ]

+ (1− 2x)FF1

= (c− a)[F (a−)F1 − F1(a−)F ] + (1− 2x)(1− b)FF1.

Since F1(a−)F is increasing on (0, 1), it follows that f ′(x) is positive
on (0, 1/2) and negative on (1/2, 1). �

3.5. Corollary. Let f(x) = x2x′2 K(x) K(x′). Then f(x) is increasing on

(0, 1/
√

2] and decreasing on [
√

1/2, 1), with

max
0<x<1

f(x) = f
(√

1/2
)

=
1

4

(
K

(√
1/2
))2

= 0.859398 . . . .

Proof. This follows from Theorem 3.4, if we take a = b = 1/2, c = 1,
and replace x by x2. �

3.6. Theorem. Let F (x) = F (a, b; c; x), with a, b, c > 0 and |x| < 1. If
a+b ≥ c ≥ 2ab and c > a+b−1/2, then 1/F (e−t) is concave on (0,∞).
In particular,

F (
√

xy) ≤ 2F (x)F (y)

F (x) + F (y)
,

for all x, y ∈ (0, 1), with equality if and only if x = y.

Proof. Here an, the coefficient of xn, is (a, n)(b, n)/[(c, n)n!], so that

nan = (a, n)(b, n)/[(c, n)(n− 1)!].

This is increasing if and only if n(a + b − c) + ab > 0, which is true if
a + b ≥ c. Next,

Tn(f(x), 1/
√

1− x) =
n!an

(1/2, n)
=

2n(a, n)(b, n)

(c, n) · 1 · 3 · · · (2n− 1)
,

which is decreasing if and only if 2n(a + b − c − 1/2) + (2ab − c) < 0,
which is satisfied if a + b − 1/2 < c and 2ab ≤ c. Hence, the assertion
follows from Theorem 3.1(e). �
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3.7. Theorem. (cf. [B2, (1.12) and Remark 1.13] Let F (x) denote the
hypergeometric function F (a, b; a + b; x), with a, b ∈ (0, 1] and |x| < 1.
Then 1/F (e−t) is concave on (0,∞). In particular,

F (
√

xy) ≤ 2F (x)F (y)

F (x) + F (y)
,

for all x, y ∈ (0, 1), with equality if and only if x = y.

Proof. In this case c = a + b, and c− 2ab = a(1− b) + b(1− a) ≥ 0, so
that the assertion follows from Theorem 3.6. �

The next result improves [B2, Theorem 1.25].

3.8. Theorem. Let f(x) =
∑∞

n=0 bnx
n, where bn = (−c/4)n/[n!(k, n)],

k = p + (b + 1)/2, as in [B2], be the generalized-normalized Bessel
function of the first kind of order p. Let c < 0 and k > 0. Then

(1) log f(Re−t)) is convex on (0,∞), so that f(
√

xy) ≤
√

f(x)f(y)
for all x, y ∈ (0,∞), with equality if and only if x = y.

(2) log f(x) is concave on (0,∞), so that
√

f(x)f(y) ≤ f((x+y)/2)
for all x, y ∈ (0,∞), with equality if and only if x = y.

(3) f(x) is convex on (0,∞), so that

f((x + y)/2) ≤ (1/2)(f(x) + f(y))

for all x, y ∈ (0,∞), with equality if and only if x = y.
(4) If k > −1−cR/4, then f(R(1−e−t)) is concave on (0,∞), so that

(f(x)+f(y))/2 ≤ f(R−
√

(R− x)(R− y)) for all x, y ∈ (0, R),
with equality if and only if x = y.

Proof. By the ratio test, the radius of convergence of the series for f(x)
is ∞.

(1) This follows from Theorem 3.1(4).
(2) Tn(f ′(x), f(x)) = (n + 1)bn+1/bn = (−c/4)/(k + n), which is

decreasing; hence the result follows from Theorem 3.1(1).
(3) This is obvious, since bn > 0 for all n.
(4) Since

Tn(f ′(x), 1/(R− x)) = (n + 1)bn+1R
n+1 = (−cR/4)n+1/[n!(k, n + 1)]

and k > −1− cR/4, we have

Tn+1

Tn

= (−cR/4)/[(n + 1)(k + n + 1)] < 1.

Hence, the result follows from Theorem 3.1(3).

�
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3.9. Remark. For 0 < x < y, let y/x = exp(2
√

t), t ∈ (0,∞), and let

G(x, y) =
√

xy, L(x, y) =
y − x

log y − log x
, and A(x, y) =

x + y

2
,

denote the Geometric Mean, Logarithmic Mean, and Arithmetic Mean
of x and y, respectively. Then

L(x, y)

G(x, y)
=

sinh(
√

t)√
t

=
∞∑

n=0

tn

(2n + 1)!
,

A(x, y)

G(x, y)
= cosh(

√
t) =

∞∑
n=0

tn

(2n)!
.

Hence, it will be interesting to study the convexity properties of these
two functions.

3.10. Corollary. (cf. [B2, Corollary 1.26])

(1)

cosh(
√

xy) ≤
√

(cosh x)(cosh y)

≤ cosh
(√

(x2 + y2)/2
)

≤ 1

2
(cosh x + cosh y)

for all x, y ∈ (0,∞), with equality if and only if x = y.
(2)

1

2
(cosh x + cosh y) ≤ cosh

(√
R−

√
(R− x2)(R− y2)

)
for 0 < R < 6 and all x, y ∈ (0,

√
R), with equality if and only

if x = y.
(3)

sinh(
√

xy)
√

xy
≤

√
sinh x

x
· sinh y

y

≤
sinh

√
1
2
(x2 + y2)√

1
2
(x2 + y2)

≤ 1

2

(
sinh x

x
+

sinh y

y

)
for all x, y ∈ (0,∞), with equality if and only if x = y.



GENERALIZED CONVEXITY AND INEQUALITIES 13

(4)

1

2

(
sinh x

x
+

sinh y

y

)
≤

sinh

(√
R−

√
(R− x2)(R− y2)

)
√

R−
√

(R− x2)(R− y2)

for 0 < R < 10 and all x, y ∈ (0,
√

R), with equality if and only
if x = y.

Proof. (1) In Theorem 3.8, let b = 1, c = −1, and p = −1/2.
Then f(x2) = cosh x, and the result follows from Theorem
3.8(1),(2),(3) if we replace x and y by x2 and y2, respectively.

(2) In Theorem 3.8, take b = 1, c = −1, and p = −1/2. Then
Tn(f ′(x), 1/(R− x)) = (n + 1)an+1R

n+1, so

Tn+1

Tn

=
(n + 2)R(2n + 2)!

(n + 1)(2n + 4)!
=

R

2(n + 1)(2n + 3)
,

which is less than 1 if and only if R < minn≥0 2(n+1)(2n+3) =
6. So the result follows from Theorem 3.8(4) if we replace x and
y by x2 and y2, respectively.

(3) In Theorem 3.8, take b = 1, c = −1, and p = 1/2. Then
f(x2) = (sinh x)/x, and the result again follows from Theorem
3.8(1),(2),(3), if we replace x and y by x2 and y2, respectively.

(4) In Theorem 3.8, take b = 1, c = −1, and p = 1/2. Then, with
Tn(f ′(x), 1/(R − x)) = (n + 1)an+1R

n+1, we have Tn+1/Tn =
R/[2(n + 1)(2n + 5)], which is less than 1 for n ≥ 0 if and only
if R < minn≥0 2(n + 1)(2n + 5) = 10. So the result follows from
Theorem 3.8(4) if we replace x and y by x2 and y2, respectively.

�

3.11. Remark. Computer experiments show that in Corollary 3.10(2)
the bound R < 6 cannot be replaced by R < 7 and that in Corollary
3.10(4) the bound R < 10 cannot be replaced by R < 11 .

3.12. Theorem. For 0 < R < ∞, let f(x) =
∑∞

n=0 anx
n, an > 0,

be convergent on (−R,R). Let m = mf be the function defined by
m(x) = f(R− x2/R)/f(x2/R). If the sequence {R(n + 1)an+1/an− n}
is decreasing, then

1

m( 4
√

(R2 − x2)(R2 − y2)
≤
√

m(x)m(y) ≤ m(
√

xy)

for all x, y ∈ (0, R), with equality if and only if x = y.
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Proof. By Theorem 3.1(2),(4), we have

f(
√

xy) ≤
√

f(x)f(y) ≤ f(R−
√

(R− x)(R− y))

for all x, y ∈ (0, R), with equality if and only if x = y. If we change
x, y to (i) x2/R, y2/R and (ii) R− x2/R, R− y2/R, respectively, then

f(xy/R) ≤
√

f(x2/R)f(y2/R)

≤ f(R−
√

(R− x2/R)(R− y2/R))

and

f(
√

(R− x2/R)(R− y2/R)) ≤
√

f(R− x2/R)f(R− y2/R)

≤ f(R− xy/R),

for all x, y ∈ (0, R), with equality if and only if x = y. The result
follows if we divide the second chain of inequalities by the first. �

We may extend some of the previous results on log-convexity to the
generalized hypergeometric function. For non-negative integers p, q, let
a1, . . . ap, b1, . . . , bq be positive numbers and let F (x) = pFq(x) be the
generalized hypergeometric function defined on (−1, 1) as in Section
1.2 (Notations).

3.13. Theorem. (1) If p = q = 0, then F (x) = ex, which is trivially
log-convex.

(2) Let p = q ≥ 1. If ak ≤ bk for each k, with at least one strict
inequality, then F is strictly log-convex on (0, 1). If ak ≥ bk,
with at least one strict inequality, then F is strictly log-concave
on (0, 1).

(3) If p > q and ak ≤ bk, with at least one strict inequality, for
k = 1, 2, . . . , q, then F is strictly log-convex on (0, 1).

(4) If 1 ≤ p < q and ak ≥ bk, with at least one strict inequality, for
k = 1, 2, . . . , p, then F is strictly log-concave on (0, 1).

(5) If p = 0, and q ≥ 1, then F is log-concave.

Proof. For (1), F (x) =
∑∞

n=0 xn/n! = ex, hence the result.
In case (2),

Tn(F ′(x), F (x)) =
B

A

a1 + n

b1 + n
· · · ap + n

bp + n
,

where A = a1 · · · ap and B = b1 · · · bp. Clearly, a ratio of the form
(a + n)/(b + n) is increasing or decreasing in n according as a < b or
a > b. Hence, F ′(x)/F (x) is increasing or decreasing as asserted, and
the result follows.

(3) As in case (2), if p > q ≥ 1, each ratio of the form (ak+n)/(bk+n)
is increasing, with at least one strictly, hence so is F ′(x)/F (x). Next,
if q = 0 and p > 0, then Tn(F ′(x), F (x)) = (a1 +n)(a2 +n) · · · (ap +n),
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which is clearly increasing, so that F ′(x)/F (x) is also increasing on
(0, 1). Thus F is log-convex.

(4) As in case (2), each ratio of the form (ak+n)/(bk+n) is decreasing,
with at least one strictly, hence so is F ′(x)/F (x).

(5) Here, Tn(F ′(x), F (x)) = 1/[(n + b1)(n + b2)...(n + bq)], which is
clearly decreasing. �
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