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Abstract. We investigate harmonic forms of geometrically formal metrics, which are defined
as those having the exterior product of any two harmonic forms still harmonic. We prove that
a formal Sasakian metric can exist only on a real cohomology sphere and that holomorphic
forms of a formal Kähler metric are parallel w.r.t. the Levi-Civita connection. In the general
Riemannian case a formal metric with maximal second Betti number is shown to be flat . Finally
we prove that a six-dimensional manifold with b1 6= 1, b2 ≥ 3 and not having the cohomology
algebra of T

3 × S3 carries a symplectic structure as soon as it admits a formal metric.

Contents

1. Introduction 1
2. Length of harmonic forms 4
3. Some algebraic facts 6
4. Holomorphic forms with harmonic squares 8
5. Harmonic 2-forms 11
5.1. 6-dimensions 13
6. The case when b2 is maximal 15
6.1. Reduction to the symplectic case 15
6.2. Proof of flatness 16
References 18

1. Introduction

Let (Mn, g) be a compact oriented Riemannian manifold. We denote by Λp(M), 0 ≤
p ≤ n the space of smooth, real-valued, differential p-forms of M . We have then a
differential complex

. . .→ Λp(M)
d
→→ Λp+1(M) . . .

where d is the exterior derivative. The p-th cohomology group of this complex,
known as the p-th deRham cohomology group will be denoted by H

p
DR(M). Now,

the Riemannian metric g induces a scalar product at the level of differential forms,
hence one can consider also the operator d?, the formal adjoint of d. For 0 ≤ p ≤ n

we define the space of harmonic p-forms by setting

Hp(M, g) = {α ∈ Λp(M) : ∆α = 0}.

Date: 24th May 2006.
2000 Mathematics Subject Classification. 53C12, 53C24, 53C55.
Key words and phrases. harmonic form, Kähler manifold.

1



2 J.-F. GROSJEAN AND P.- A. NAGY

Here the Laplacian ∆ is defined by

∆ = dd? + d?d.

Classical Hodge theory produces an isomorphism

(1.1) H
p
DR(M) ≡ Hp(M, g)

for all 0 ≤ p ≤ n. Whilst H?(M) =
⊕

p>0

H
p
DR(M) is a graded algebra, generally

H? =
⊕

p>0

Hp(M, g) is not an algebra with respect to the wedge product operation

for there is no reason the isomorphism 1.1 descends to the level of harmonic forms.
Our next definition is related to this fact.

Definition 1.1. Let (Mn, g) be a compact and oriented Riemannian manifold.

(i) The metric g is p-formal for some 1 ≤ p ≤ n − 1 if the product of any
harmonic p-forms remains harmonic.

(ii) The metric g is formal if it is p-formal for all 1 ≤ p ≤ n− 1.

A closely related notion is that of topological formality (see [2] for instance), which
implies that the rational homotopy type of the manifold is a formal consequence of
its cohomology ring [13]. From the existence of a formal metric it follows that the
underlying manifold is topologically formal, and this provides obstructions to the
existence to such metrics; for instance they cannot exist on nilmanifolds since those
have non-trivial Massey products, fact which is in itself an obstruction to formality
[2, 16]. On the other hand, simply connected, compact manifolds of dimension not
execeding 6 are topologically formal [7, 9].
Now the existence of formal metrics is more directly related to the geometry of the
ambient manifold and known obstructions are related to the length of harmonic
forms.

Theorem 1.1. [6]Let (Mn, g) be compact and oriented such that g is a formal
metric.

(i) The inner product of any two harmonic forms is a constant function.

(ii) bp(M) ≤

(
n

p

)
for all 1 ≤ p ≤ n.

(iii) If in (ii) equality occurs for p = 1 then g is a flat metric.

Standard examples of formal metrics are provided by compact symmetric spaces
for in this case all harmonic forms must be parallel with respect to the Levi-Civita
connection. D. Kotschik proved that in dimension 4 every geometrically formal
manifold has the cohomology algebra of a compact symmetric space. One of the
current questions related to the notion of geometric formality is then to examine
up to what extent this is true in general.
In this paper we shall be mainly concerned with making obstructions to the existence
of a geometrically formal, Kähler metric. Here the topological formality is no longer
an issue since any Kähler manifold is known to have this property [2]. At first, we
show that, in the Kähler context, the p-formality assumption on the metric is enough
to imply the constancy of the length of harmonic p-forms.
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Theorem 1.2. Let (M 2n, g) be a compact Kähler manifold.

(i) If g is p-formal, then the inner product of any two harmonic p-forms is a
constant function.

(ii) If g is 2p-formal then it is 2r-formal for any r ≤ p.
(iii) g is formal if and only if it is n− 1 and n-formal.

When trying to investigate similar issues for Kähler related, odd dimensional ge-
ometries such as Sasakian geometry it turns out that the whole cohomology algebra
can be described. We prove

Theorem 1.3. Let (M 2n+1, g) be a compact Sasakian manifold. If g is a formal
metric then M is a real cohomology sphere.

Next we study properties of holomorphic forms of a formal Kähler metric and
obtain

Theorem 1.4. Let (M 2n, g, J) be a Kähler manifold which is geometrically formal
( or only p-formal). Then every harmonic form Ω of real type (p, 0) + (0, p) (hence
every holomorphic p-form ) is parallel with respect to the Levi-Civita connection.
Moreover Ω induces in a canonical way a local splitting of M as the Riemannian
product of two compact Kähler manifolds M1 and M2 so that Ω is zero on M1,
non-degenerate on M2 which is Ricci flat.

Remark 1.1. (i) Theorem 1.4 was already proved in [8] for p = 2, using arguments
relying heavily on the algebraic structure of the space of harmonic 2-forms. For
higher degree forms, such results are no longer available.
(ii) If in Theorem 1.4 we furthermore assume the metric being locally irreducible
and not symmetric, it follows from Berger‘s holonomy classification theorems (see
[12]) that the only cases when we can have a non-vanishing holomorphic form are
when Hol(g) = Sp(m)(n = 2m) or Hol(g) = SU(n).
(iii) From the above it also follows that if M admits a locally irreducible Kähler and
formal metric which is not Ricci flat then Td(M) = 1.

In the second part of the paper we are concerned with giving a characterisation
of geometrically formal Riemannian manifold with maximal second Betti number.
We prove :

Theorem 1.5. Let (Mn, g) be a geometrically formal Riemannian manifold with

n > 3. If b2(M) is maximal, that is equal to b2(M) =

(
n

2

)
, then the metric g is

flat.

This clarifies the equality case in Theorem 1.1, (iii) for degree 2-forms. Note that
the assertion in Theorem 1.5 is straightforward when n is odd for if n = 2k + 1 the
formality and the maximality of b2 imply that b2k is maximal. Hodge duality implies
then the maximality of b1 and hence the flatness of the metric. When n is even, our
point of departure consists in observing that the metric must admit a compatible
almost Kähler structure and then work out this situation within the same circle of
arguments which have led to proving Theorem 1.4. Along the way, as a necessary
ingredient to our proof, we show that any harmonic 2-form w.r.t. a formal metric
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diagonalises with constant eigenvalues and constant rank eigendistributions. This
is extending results from [8] to the general Riemannian case and can also be used
to give sufficient conditions, essentially phrased in terms of Betti numbers lower
bounds, for a formal metric to admit a compatible symplectic form, at least in
dimension 6.

Theorem 1.6. Let (M 6, g) be geometrically formal. If b1(M) 6= 1 and b2(M) ≥ 3
and moreover M has not the real cohomology algebra of T3 × S3 then M carries a
g-compatible symplectic form.

It would be interesting to see have results similar to Theorem 1.6 in arbitrary
even dimensions and of course to give necessary but also sufficient conditions for a
geometrically formal metric to admit a compatible symplectic structure. In doing
so, the difficulties one faces are related to understanding, at the algebraic level, the
constraints imposed by geometric formality on forms of degree ≥ 3.

2. Length of harmonic forms

Let (M2n, g, J) be a compact oriented Kählerian manifold of dimension 2n. Let
L : Λ?(M) → Λ?(M) be the exterior multiplication with the Kähler form ω =
g(J ·, ·). Recall that the space of primitive forms, Λ?

0(M), is given as the kernel
of L?, the adjoint of L, w.r.t. the metric g. Moreover let us extend the complex
structure to J : Λ?(M) → Λ?(M) by setting

(Jα)(X1, . . . , Xp) = α(JX1, . . . , JXp)

for all α in Λp(M) and X1, . . . , Xp in TM . Now, let us consider the operators
Pk : Λr(M) × Λs(M) → Λr+s−2k(M) defined by

Pk(α, β) :=
∑

i1...ik

(ei1y...eikyα) ∧ (Jei1y...Jeikyβ)

Proposition 2.1. For any α ∈ Λr(M) and β ∈ Λs(M), we have

(i) L?(α ∧ β) = L?α ∧ β + α ∧ L?β + (−1)r−1P1(α, β).
(ii) L?Pk(α, β) = Pk(L

?α, β) + Pk(α, L
?β) + (−1)r−k−1Pk+1(α, β).

(iii) (L?)p(α ∧ β) = (−1)
p(p−1)

2 p! < α, Jβ > for any primitive p-forms α and β.

Proof. Let α ∈ Λr(M) and β ∈ Λs(M). Then

L?(α ∧ β) =
1

2

∑

i

Jeiyeiy(α ∧ β)

=
1

2

∑

i

Jeiy((eiyα) ∧ β) +
1

2
(−1)r

∑

i

Jeiy(α ∧ (eiyβ))

= L?α ∧ β +
1

2
(−1)r−1

∑

i

(eiyα) ∧ (Jeiyβ)

+
1

2
(−1)r

∑

i

(Jeiyα) ∧ (eiyβ) + α ∧ L?β

= L?α ∧ β + α ∧ L?β + (−1)r−1P1(α, β).
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This completes the proof of (i). Now

L?Pk(α, β) =
1

2

∑

ii1...ik

Jeiyeiy((ei1y...eikyα) ∧ (Jei1y...Jeikyβ))

=
1

2

∑

ii1...ik

Jeiy((eiyei1y...eikyα) ∧ (Jei1y...Jeikyβ))

+
1

2
(−1)r−k

∑

ii1...ik

Jeiy((ei1y...eikyα) ∧ (eiyJei1y...Jeikyβ))

= Pk(L
?α, β) +

1

2
(−1)r−k−1

∑

i1...ik+1

(ei1y...eik+1
yα) ∧ (Jei1y...Jeik+1

yβ))

+
1

2
(−1)r−k

∑

i1...ik+1

(Jei1yei2y...eik+1
yα) ∧ (ei1yJei2y...Jeik+1

yβ)) + Pk(α, L
?β)

and the assertion (ii) is proved. To prove (iii) we first obtain by induction from (ii)

that L?)p(α ∧ β) = (−1)
p(p−1)

2 Pp(α, β). To finish the proof it is enough to directly
use the definition of Pp to get Pp(α, β) = p! < α, Jβ >. �

Lemma 2.1. Let (M 2n, g, J) be a 2p-formal Kähler manifold. For any α ∈ H2r(M),
β ∈ H2s(M) with r, s ≤ p and for any k ≤ min(2r, 2s), Pk(α, β) is harmonic. More
generally, if (M 2n, g, J) is formal then for any α ∈ Hp(M) and β ∈ Hq(M) and
any k 6 min(p, q), Pk(α, β) is harmonic.

Proof. Let α ∈ H2r(M) and β ∈ H2s(M). By the relation 2. of the proposition
2.1, it is obvious that P1(α, β) is harmonic. By induction, if we assume that for
k ≤ 1, Pk(α, β) is harmonic for any α ∈ H2r(M) and β ∈ H2s(M) with r, s ≤ p,
the relation 3. of the proposition 2.1 says that Pk+1(α, β) is harmonic. The proof
is the same for the second assertion. �

Proof of Theorem 1.2 (i) It is enough to work only with primitive forms in
virtue of the Lefschetz decomposition of Λ?(M), (see [5]) which basically says that
any form on M can be manufactured out of primitive forms. If α be harmonic in
Λp

0(M), then Jα is still harmonic hence by hypothesis α∧Jα is still harmonic. Since
g is a Kähler metric (L?)p(α∧Jα) is harmonic too, hence a constant function. The
proof now follows by Proposition 2.1, (iii), given that J 2 = (−1)pid on p-forms. �

Part of the algebraic facts developed above can be also used to describe completely
the cohomology algebra of a geometrically formal, Sasakian metric. For an intro-
duction to Sasakian geometry, the odd dimensional analogue of Kähler geometry,
we refer the reader to [4].

Theorem 2.1. Let (M 2n+1, g) be a Sasakian manifold. If the metric g is formal
then bp(M) = 0 for all 1 ≤ p ≤ 2n+ 1, in other words M is a homology sphere.

Proof. Recall that the tangent bundle of M splits as TM = V ⊕H an orthogonal
direct sum where V is spanned by the so-called Reeb vector field, to be denoted by
ζ. the contact distribution H admits a g-compatible complex structure J : H → H
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which moreover satisfies dθ = ω where is the 1-form dual to ζ and ω = g(J ·, ·).
We call a differential p-form horizontal, and denote the corresponding space by
Λp(H) if the interior product with ζ vanishes. Now let dH : Λ?(H) → Λ?(H) be
the projection of the usual exterior derivative d onto H. If d?

H is its formal adjoint

w.r.t. to the restriction of g on H, we have on Λp(M) = Λp(H) ⊕

[
Λp−1(H) ∧ θ

]

(2.1) d? =

(
d?

H (−1)pLζ

(−1)pL? Lζ

)

where Lζ denotes the Lie derivative. As a last reminder, we mention that the
operator J of Λ?(H), defined in analogy with the Kähler case preserves the space
of harmonic forms.
Let now α be a harmonic form on M . It is known fact that if 0 ≤ p ≤ n, every
harmonic form α on M is horizontal, invariant by the Reeb vector field. Moreover,
α must be primitive, that is L?α = 0. Using the formality assumption on g we
obtain that α ∧ Jα is still harmonic. Since this a horizontal form, invariant by the
Reeb field it follows from (2.1) that L?(α ∧ Jα) = 0. We conclude again to the
vanishing of α by means of Proposition 2.1, (iii). �

3. Some algebraic facts

Let (V 2n, g, J) be a Hermitian vector space and let Λ? be its exterior algebra.
Consider the operator J : Λp → Λp acting on a p-form α as

(Jα)(v1, . . . , vp) =

p∑

k=1

α(v1, . . . , Jvk, . . . vp)

for all v1, . . . vp in V . J acts as a derivation on Λ? and gives the complex bi-grading
of the exterior algebra in the following sense. Let λp,q be given as the −(p − q)2-
eigenspace of J 2. Then

Λs =
∑

p+q=s

λp,q

an orthogonal, direct sum. Note that λp,q = λq,p. Of special importance in our
discussion are the spaces λp = λp,0; forms α in λp are such that (X1, . . . , Xp) →
α(JX1, X2, . . . , Xp) is still an alternating form which equals p−1Jα. Let λp ⊗1 λ

q

be the space of tensors Q ∈ λp ⊗ λq which satisfy [(JQ)(X1, ...Xp)](Y1, ..., Yq) =
−[J(Q(X1, ...Xp))](Y1, ..., Yq) (here J as a map of λp stands in fact for p−1J ). We
also define λp ⊗2 λ

q as the space of tensors Q : λp → λq such that QJ = JQ.

Lemma 3.1. Let a : λp ⊗ λq → Λp+q be the total antisymmetrisation map. Then

(i) The image of the restriction of a to λp ⊗1 λ
q → Λp+q is contained in λp,q.

(ii) The image of the restriction of a to λp ⊗2 λ
q → Λp+q is contained in λp+q.

Proof. We shall provide a direct proof, but only for (i), that of (ii) being similar.
Pick Q in λp ⊗1 λ

q. Then

a(Q) =
∑

I=(i1,...ip)

e?
i1
∧ . . . e?

ip
∧Q(ei1 , . . . eip)
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where for v in V we denote by v? the dual, w.r.t to the metric, 1-form. Then

J (a(Q)) =
∑

I=(i1,...ip)

J (e?
i1
∧ . . . e?

ip
) ∧Q(ei1 , . . . eip)

+
∑

I=(i1,...ip)

e?
i1
∧ . . . e?

ip
∧ JQ(ei1 , . . . eip).

For any 1 ≤ r ≤ p we compute

∑

I=(i1,...ip)

e?
i1
∧ . . . Je?

ir
. . . ∧ e?

ip
∧Q(ei1 , . . . eip)

= −
∑

I=(i1,...ip)

e?
i1
∧ . . . (Jeir)

? . . . ∧ e?
ip
∧Q(ei1 , . . . eip)

=
∑

I=(i1,...ip)

e?
i1
∧ . . . e?

ir
. . . ∧ e?

ip
∧Q(ei1 , . . . Jeir . . . eip)

=
∑

I=(i1,...ip)

e?
i1
∧ . . . e?

ir
. . . ∧ e?

ip
∧Q(Jei1 , . . . eir . . . eip)

=
∑

I=(i1,...ip)

Je?
i1
∧ . . . e?

ir
. . . ∧ e?

ip
∧Q(ei1 , . . . eir . . . eip).

On the other side we have JQ(ei1 , . . . eir . . . eip) = qJQ(ei1 , . . . eir . . . eip) =
− qQ(Jei1 , . . . eir . . . eip) and putting all these together we arrive easily at

J (a(Q)) = (p− q)
∑

I=(i1,...ip)

Je?
i1
∧ . . . e?

ip
∧Q(ei1 , . . . eip).

Applying J once more time while passing through the same steps yields J 2a(Q) =
−(p− q)2a(Q) and the proof is completed. �

The main technical observation in this section is

Proposition 3.1. The following hold

(i) The total alternation map a : λp ⊗1 λ
q → Λp+q is injective for p 6= q.

(ii) The kernel of a : λp ⊗ λq → Λp+q is contained in λp ⊗2 λ
q.

Proof. (i) If Q belongs to λp⊗1λ
q and X is in V we define QX and QX in λp−1⊗1λ

q

and λp ⊗1 λ
q−1 respectively by

QX = Q(X, ) and QX = XyQ.
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It is easy to see that those are well defined. Assume now that a(Q) = 0. Then

0 = Xya(Q) =
∑

i1,...,ip

(Xy(e?
i1
∧ ... ∧ e?

ip
)) ∧Q(ei1 , ..., eip)

+ (−1)p
∑

i1,...,ip

(e?
i1
∧ ... ∧ e?

ip
) ∧ (XyQ(ei1 , ..., eip))

= p
∑

i1,...,ip−1

(e?
i1
∧ ... ∧ e?

ip−1
) ∧Q(X, ei1 , ..., eip−1)

+ (−1)p
∑

i1,...,ip

(e?
i1
∧ ... ∧ e?

ip
) ∧ (QX(ei1 , ..., eip−1))

= pa(QX) + (−1)pa(QX)

By the previous Lemma a(QX) is in λp−1,q whilst a(QX) belongs to λp,q−1 hence
both must vanish since elements of distinct spaces as p 6= q. Now an induction
argument leads directly to the proof of the Proposition.
(ii) �

4. Holomorphic forms with harmonic squares

Let (M2n, g, J) be a compact Kähler manifold and consider a harmonic p-form Ω
in λp, that is of type (0, p) + (p, 0). It is a well now fact, see [5] for instance, that
Ω must be holomorphic, that is

(4.1) ∇JXΩ = ∇X(JΩ)

for all X in TM . Together with Ω comes S : Λp−1 → Λ1 definedS(X1, ..., Xp−1) =
Ω(X1, ..., Xp−1, ·). That Ω has real type (0, p) + (p, 0) translates into

(4.2) (S(JX1, ..., Xp−1))
] = −J(S(X1, ..., Xp−1))

]

whenever X1, ..., Xp−1 belong to TM and where for any 1-form θ, θ] denotes the
associated vector field with respect to the metric. Let now Q : Λp−1 → λp be given
by

Q(X1, ..., Xp−1) = ∇(S(X1,...,Xp−1))]Ω

for all X1, ..., Xp−1 in TM . The next Lemma provides information about the com-
plex type ofQ.

Lemma 4.1. The tensor Q belongs to λp−1 ⊗1 λ
p.

Proof. Follows immediately from (4.1) and (4.2). �

Proposition 4.1. Let Ω in λp be a harmonic form. If the metric g is p-formal

(4.3) ∇(S(X1,...,Xp−1))]Ω = 0

holds, for all X1, ..., Xp−1 in TM .



9

Proof. Let {ei} be a geodesic frame at a point m in M . If p is even Ω∧Ω is harmonic
hence and then we have at m

0 = − d?(Ω ∧ Ω) =
∑

i

eiy∇ei
(Ω ∧ Ω)

=2
∑

i

eiy(∇ei
Ω ∧ Ω) = 2

∑

i

∇ei
Ω ∧ (eiyΩ)

since Ω is itself co-closed. In other words a(Q) = 0 and we conclude by means of
Lemma 4.1 and Proposition 3.1 that Q = 0. If p is odd the harmonicity of Ω ∧ JΩ
gives

0 = −d?(Ω ∧ JΩ) =
2n∑

i=1

eiy(∇ei
Ω ∧ JΩ + Ω ∧∇ei

JΩ)

=
2n∑

i=1

−(∇ei
Ω) ∧ (eiyJΩ) + (eiyΩ) ∧ ∇ei

(JΩ)

where we took into account the co-closedeness of Ω and JΩ. Now ∇ei
JΩ = ∇Jei

Ω
hence

0 =
2n∑

i=1

−∇ei
Ω ∧ (JeiyΩ) + (eiyΩ) ∧ ∇Jei

Ω

= −2
2n∑

i=1

∇ei
Ω ∧ (JeiyΩ).

From this we see that a(Q) = 0 and Lemma 4.1 together with Proposition 3.1 lead
then to the vanishing of Q and hence to the claimed result. �

Remark 4.1. From the proof of the result above we see that it actually holds for
harmonic forms Ω in λp such that Ω ∧ Ω (p even) resp. Ω ∧ JΩ (p odd).

We need now recall some facts about the algebraic structure of harmonic forms
of type (1, 1).

Proposition 4.2. [8] Let (M 2n, g, J) be a compact Kähler manifold such that the
metric g is formal. If α = g(F ·, ·) is harmonic in λ1,1 then we have an orthogonal
and J-invariant splitting

TM =

p⊕

i=0

Ei

which is preserved by F and such that F = λiJi on Ei, for all 0 ≤ i ≤ p. Here Ji

are almost complex structures on Ei and λi are real constants, for 0 ≤ i ≤ p.

Now we would like to conclude from Proposition 4.1 that Ω is actually parallel.
This is eventually seen to be the case if Ω is non-degenerate at every point of the
manifold. To rule out the general case we must study the null distribution of Ω.
For each m in M define Vm = {X ∈ TmM : XyΩ = 0}. Our first concern is to show
that m→ Vm gives a smooth, constant rank distribution on M .
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Lemma 4.2. Suppose that (M 2n, g, J) is p-formal and let Ω in λp be harmonic.
Then V is of constant rank.

Proof. Let αΩ be defined by αΩ(X, Y ) = 〈JXyΩ, Y yΩ〉 for all X, Y in TM . This is
harmonic since proportional to Pp−1(Ω,Ω) and αΩ is in λ1,1 by Lemma 2.1. Since g
is p-formal every harmonic form in λ1,1 has constant rank by Proposition 4.2; but
the nullity of αΩ coincides with that of Ω and the Lemma is proved. �

It is easy to see that V is actually J-invariant and since it has constant rank we
obtain all over M an orthogonal, J-invariant splitting

TM = V ⊕H

where H is the orthogonal complement of V in TM .

Lemma 4.3. Both distributions V and H are integrable and H is totally geodesic.

Proof. By the definition of V the distribution H is spanned by S(X1, ..., Xp−1) with
X1, ..., Xp−1 in TM hence ∇XΩ = 0 for all X in Γ(H). Taking now a direction,
say V in Γ(V) gives that ∇XV belongs to V and this shows the total geodesicity
hence the integrability of H. The integrability of V is an easy consequence of the
closedeness of Ω. Indeed, taking X1, ..., Xp−1 in H and V,W in V, we have

0 = dΩ(X1, ..., Xp−1, V,W ) =
∑

16i6p−1

(−1)i+1(∇Xi
Ω)(X1, ..., X̂i, ..., Xp−1, V,W )

− (∇V Ω)(X1, ..., Xp−1,W ) + (∇W Ω)(X1, ..., Xp−1, V )

= Ω(X1, ..., Xp−1, [V,W ])

�

To prove the parallelism of Ω, which amounts to having V totally geodesic we
need to establish one more fact. Recall [11] that the transversal Ricci tensor RicH

of the totally geodesic H is defined as

RicH(X, Y ) =
∑

i

R(X, ei, Y, ei)

for all X, Y in H and frames {ei} in H. When V integrates to give a Riemannian
submersion, which is always true locally, RicH corresponds to the usual Ricci tensor
of the base manifold.

Lemma 4.4. The transversal Ricci tensor RicH of the distribution H vanishes.

Proof. Since M is p-formal with p even, M is also 2-formal. Let SΩ be the symmetric
J-invariant (1, 1)-tensor defined by 〈SΩX, Y 〉 = −αΩ(JX, Y ). Using proposition

3.1 of [8] we have an orthogonal J-invariant integrable decomposition TM =
N⊕

i=0

Ei

where Ei are the eigenspaces of SΩ corresponding respectively to (the pairwise

distinct) eigenvalues of SΩ. Choosing λ0 = 0, we have V = E0 and H =

N⊕

i=1

Ei.
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From [8], we know that the forms αΩ,k defined by αΩ,k(X, Y ) = 〈Sk
ΩJX, Y 〉 are

belonging to λ1,1 and

αΩ,k =

N∑

i=1

λk
iωi(4.4)

where ωi are the orthogonal projection of the Kähler form ω on Ei. Now, the
restriction of αΩ to an integral distribution of H is parallel and then αΩ,k too. By
a similar argument to the proof of Proposition 3.1 of [8], we deduce from (4.4) that
each ωi is parallel on H and then each Ei is totally geodesic. Now, let Z be in H.
Since H is totally geodesic, we have ∇Ω = 0 where ∇ is the Levi-Civita connection.
Then

0 = 〈R(Z, JZ)Ω, JΩ〉

= −
1

p!

∑

k,i1,...,ip

R(Z, JZ, eij , ek)Ω(ei1 , ..., êij , ek, ..., eip)(JΩ)(ei1 , ..., eip)

= −
1

(p− 1)!

∑

k,l,i1,...,ip−1

R(Z, JZ, el, ek)Ω(ek, ei1 , ..., eip−1)(JΩ)(el, ei1 , ..., eip−1)

=
∑

k,l

(R(JZ, el, Z, ek) +R(el, Z, JZ, ek))〈ekyΩ, JelyΩ〉

= −2
∑

k,l

R(Z, ek, Z, el)〈SΩek, el〉

Then
∑

k,l

R(Z, ek, Z, el)〈SΩek, el〉 = 0. Since SΩ is non-degenerate and each Ei

is totally geodesic for i > 1, it follows that RicEi = 0 for any i > 1 and then
RicH = 0. �

Remark 4.2. The vanishing of RicH continues to hold when (M 2n, g) is supposed
to be only p-formal with p even. For this implies 2-formality and therefore the
harmonicity of αΩ and the proof continues as above..

We have proved the nullity of RicH , a situation well described by the following

Theorem 4.1. [8] Let (M 2n, g, J) be a compact Kähler manifold equipped with a
Riemannian foliation with complex leaves. If the the foliation is transversally to-
tally geodesic with nonnegative transversal Ricci tensor then it has to be locally a
Riemannian product.

Proof of Theorem 1.4 Since RicH vanishes, it follows by Theorem 4.1 that V is
totally geodesic, fact which implies immediately the parallelism of Ω. �

5. Harmonic 2-forms

We shall develop in this section the general Riemannian counterpart of Propo-
sition 4.2. From now on, we use the metric to identify a 2-form α with a skew-
symmetric endomorphism A of TM ; explicitly α = g(A·, ·). Moreover, the space A
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is the space of skew-symmetric endomorphisms of TM which are associated to an
element of H2(M).

Proposition 5.1. Let (Mn, g) be a compact geometrically formal manifold. We
have :

A2A1A3 + A3A1A2 ∈ A

whenever Ai, 1 ≤ i ≤ 3 belong to A.

Proof. Let α belong to H2(M). Denote by Lα : Λ? → Λ? the exterior multiplication
by α. Since g is formal and L?

α is up to sign equal to ?Lα? it follows that both Lα

and L?
α preserve the space of harmonic forms of (M, g). Therefore, if αi, 1 ≤ i ≤ 3

belong to H2(M) then L?
α1
Lα2α3 is an element of H2(M). Let Ai, 1 ≤ i ≤ 3

the skew-symmetric endomorphisms associated to the forms αi, 1 ≤ i ≤ 3 and let
{ei, 1 ≤ i ≤ n} be a local orthonormal basis in TM . We shall now compute

L?
α1
Lα2α3α1 =

n∑

i,j=1

α1(ei, ej)ejy

[
eiy(α2 ∧ α3)

]

But

ejy

[
eiy(α2∧α3)

]
= α2(ei, ej)α3−(eiyα2)∧(ejyα3)+(ejyα2)∧(eiyα3)+α3(ei, ej)α2.

Further computation yields, after some elementary manipulations

α1y(α2 ∧ α3) = 〈α1, α2〉α3 + 〈α1, α3〉α2 + 2〈A3A1A2 + A2A1A3·, ·〉

�

Proposition 5.2. Let (Mn, g) be a compact geometrically formal and α belong to
H2(M) with associated A. Then :

(i) The eigenvalues of A2 are constant with eigenbundles of constant rank.
(ii) Let −λ2

i be (the pairwise distinct) eigenvalues of A2, with λ0 = 0 and let Ei

be eigenspaces of A2 corresponding to −λ2
i . Then for 1 6 i 6 p, Ei is of even

dimension and we have an orthogonal decomposition

α =

p∑

i=1

λiωi

where ωi belongs to H2(M), λiωi is the orthogonal projection of α on Ei and
ωi is a complex structure on Ei.

Proof. (i) From the Proposition 5.1 it follows by induction that A2k+1 belongs to A
whenever A is in A. Since A is finite dimensional, there exists P ∈ R[X] so that
P (A2) = 0. Since A2 is symmetric, P can be supposed to have only real and simple
roots. Let µi = −λ2

i , 0 6 i 6 p be these (pairwise distinct) roots and let mi be
the dimension of the corresponding eigenbundle. To see that mi, 0 6 i 6 p are
constant over M , we use the fact that A2k+1 belongs to A for any k ∈ N and from
the formality of M we deduce that Tr(A2k) = −〈A2k−1, A〉 = ck for some constant
ck and for any integer k. Solving this Vandermonde system leads to the constancy
of the functions mi, 1 6 i 6 p.
(ii) The orthogonal projection of α on Ei is given by λiωi for 1 6 i 6 p where
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ωi is a complex structure on Ei. More precisely for 1 6 i 6 p the dimension mi

is even (mi = 2di) and there exists an orthonormal adapted basis (eij)16j6di
so

that ωi =
∑

16j6di

e?
ij ∧ e

?
ij+di

. From the proposition 5.1, it follows that

p∑

i=1

λ2k+1
i ωi is

harmonic and by a similar argument use in the proof of the proposition 3.1 of [8]
we deduce that ωi belong to H2(M). �

The technical advantage of Proposition 5.2 is that all distributions algebraically
out of harmonic forms are of constant rank over the manifold, and in this respect
they can -as we shall in the next section-treated as algebraic objects.

5.1. 6-dimensions. We shall present here a geometric application of the algebraic
facts from the previous section. More precisely, we are going to obtain sufficient
conditions for a geometrically formal 6-manifold to admit a compatible symplectic
structure. Note this is well known in dimension 4, see [6]. We need first making a
number of preliminary results.

Lemma 5.1. Let (Mn, g) be geometrically formal and let α be a harmonic 2-form
with kernel V and such that on H = V⊥, α = g(J ·, ·) for some almost complex
structure J of H. Then for any φ in Hp(M) we have that φij belongs to Hp(M)
where for any i, j with i + j = p we have denoted by φij the orthogonal projection
of φ onto Λi(V) ⊗ Λj(H) ⊆ Λp(M).

Proof. We first note that

L?
ωJ

(ψ ∧ ωJ) = −dimH · ψ + (L?
ωJ
ψ) ∧ ωJ + 2(−1)p+1Qψ

whenever ψ is a p-form on M , where the operator Q is given by Qψ =
∑

ei∈H

(eiyψ)∧ei

for an arbitrary local frame {ei} in H. Hence Q preserves the space of harmonic
forms and on the hand a standard computation shows that the eigenvalues of Q
on Λp(M) are (−1)ij with corresponding eigenbundles Λi(V) ⊗ Λj(H). The usual
raising to power argument gives now the wanted result. �

Lemma 5.2. Let (M 6, g) be geometrically formal. If g doesn‘t admit a compatible
symplectic form then every non-zero harmonic 2-form on M has 4-dimensional
kernel.

Proof. Let α belong to H2(M). We must only show that it cannot have 2-dimensional
kernel. Proceeding by contradiction, let us suppose that V = ker(α) is 2-dimensional,
so that H = V⊥ is of dimension 4. Moreover, on H from α we get following ??

a harmonic α′ = g(J ·, ·) for some almost complex J on H. Then α′ + ?(α′ ∧ α′)
gives a globally defined symplectic form on M , compatible with g, hence the desired
contradiction. �

Proposition 5.3. Let (M 6, g) be geometrically formal with b1 = 0 and b2 ≥ 2. If
g does not admit a compatible symplectic form we must have b2 = 2, b3 = 6 and
moreover M is a parallelisable manifold.

Proof. Let α be a non-zero harmonic 2-form on M . By Lemma 5.2 the distribution
V = ker(α) must be 4-dimensional, so after constant rescaling α can be written as
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α = g(J ·, ·) where J is an almost complex structure on the plane distribution H =
V⊥. We now note there are no non-zero harmonic 2-forms contained in Λ2(V), for by
Lemma 5.2 any such form must have 4-dimensional kernel and hence must vanish.
It follows then from Lemma 5.1 that H2(M) is contained in (Λ1(V)⊗Λ1(H))⊕RωJ .
Further, because b2 ≥ 2, there must be β in Λ1(V)⊗Λ1(H), and again by Lemma 5.2
this has 4-dimensional kernel which we shall denote by V ′. By rescaling if necessary
we shall also assume that β is of unit length. Consider the orthogonal splitting
V ′ = E1 ⊕ E2 obtained by orthogonally projecting elements of V ′ onto V and H

respectively. Similarly, we split H ′ = (V ′)⊥ as an orthogonal sum H ′ = F1 ⊕ F2

with F1 and F2 subspaces of V and H respectively. We now reason by counting
dimensions : E2 is not the zero space because that would imply V ′ ⊆ V, actually
V ′ = V because both distributions are of rank 4 therefore the vanishing of β since
this an element of Λ1(V) ⊗ Λ1(H). We cannot have F2 = (0) neither : it would
imply eventually that H ′ ⊆ V and V = E1 ⊕ H ′ which is easily seen to lead to M
having a compatible symplectic structure given by α+ β + ?(α+ β)2, an absurdity.
We showed that both of E2 and F2 have rank at least 1, and their orthogonality
(following again from β being orthogonal to Λ2(V) ⊕ Λ2(H)), together with having
H of rank 2 leads to having E2, F2 of rank 1. Since the manifold is oriented, every
real line bundle over M is trivial and this leads to the existence of a globally defined
frame {e1, e2} on H, spanning E2 and F2 respectively. Similar arguments imply the
global existence of a unit ζ in V spanning F1 and it is straightforward to see that
β = ζ ∧ e2.
Pick now a non-zero harmonic 3-form T on M . By Lemma 5.1 the components T 11

in Λ3(V), T 12 in Λ1(V) ⊗ Λ2(H) = LαΛ1(V) of T are harmonic, but we conclude to
their vanishing since those are easily seen to produce harmonic 1-forms. Hence T
can be written as

T = ω1 ∧ e
1 + ω2 ∧ e

2

with ωk, k = 1, 2 in Λ2(V). Moreover, LφT resp. L?
φT vanish for any harmonic

2-form φ because b1 = 0. Hence from LβT = 0 and L?
βT = 0 we get that ζ ∧ ω1 =

0, ζyω2 = 0. It follows easily that harmonic 3-forms on M are contained in a rank
6 sub-bundle of Λ3(M), thus using that scalar products of harmonic 3-forms are
(pointwisely) constant we obtain that b3(M) ≤ 6. Since M has nowhere vanishing
vector fields, it has vanishing Euler characteristic, and from b1 = 0, b2 ≥ 2 we get

b3 = 2(1 + b2) ≥ 6

showing that actually b2(M) = 2 and b3(M) = 6. �

Theorem 5.1. Let (M 6, g) be geometrically formal with b1(M) 6= 1 and b2(M) ≥ 2.
If g does not admit a compatible symplectic form then either :
(i) M has the cohomology algebra of T3 × S3

or
(ii) b1 = 0, b2 = 2, b3 = 6 and M is a parallelisable manifold.

Proof. In view of the previous results it suffices to treat the cases when b1 6= 0.
Again, we do a case by case discussion. Let V be the distribution spanned by the
harmonic 1-forms. say ζk, 1 ≤ k ≤ b1 be a frame in V, and consider the orthogonal
splitting TM = V⊕H where H = V⊥. As an immediate consequence of Lemma 5.1
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and of the fact that H doesn‘t contain, by definition, harmonic 1-forms it follows
that harmonic 2-forms are contained in Λ2(V) ⊕ Λ2(H).
If b1 = 2, H is of rank 4 and since b2(M) ≥ 2 there must be a non-zero harmonic
2-form contained in Λ2(H). In view of Lemma 5.2 it has rank 4 kernel and therefore
vanishes, a contradiction.
Suppose now that b1 = 3 so that H is of rank 3. Then H2(M) ⊆ Λ2(V) and as
before, by using Lemma 5.1 we have that H3(M) ⊆ Λ3(V) ⊕ Λ3(H). It is now
straightforward that M has the cohomology algebra of T3 × S3.
If b1 = 4, then ζ1∧ζ2+ζ3∧ζ4+?(ζ1∧ζ2∧ζ3∧ζ4) is a symplectic form, a contradiction.
Now we cannot have b1 = 5 ([6]) and when b1 = 6 the metric is flat hence there is
a compatible symplectic structure, a contradiction. This finishes the proof of the
theorem. �

The proof of Theorem 1.6 follows now immediately from the above.

Remark 5.1. (i) The proof of Proposition 5.3 can also be adapted to show that if
(M6, g) is formal with b1 = 0, b2 = 1 and g does not admit a compatible symplectic
structure then b3 ≤ 6.
(ii) While it is unlikely that alternative (ii) in Theorem 5.1 is possible, for the time
being we felt short ruling this case out.

6. The case when b2 is maximal

We study in this section geometrically formal manifolds (Mn, g) having maximal

second Betti number, i.e. b2(M) =

(
n

2

)
. To prove Theorem 1.5, we split our

discussion into two cases accordingly to the parity of n.

Proposition 6.1. Let (Mn, g) be geometrically formal. If the bp(M) is maximal
for some 1 ≤ p ≤ n− 1 and (p, n) = 1 then g is a flat metric.

Proof. Formality tells us that bpq(M) is maximal for any natural q and since (p, n) =
1 we arrive at b1 maximal, and it follows that g is flat. �

Hence, when n is odd and b2(M) is maximal, the metric is flat and we need only
consider the case when n is even.

6.1. Reduction to the symplectic case. As an immediate consequence of Propo-
sition 5.2 we have :

Proposition 6.2. Let (M 2n, g) be a compact geometrically formal manifold such
that b2 is maximal. Then there exists an almost Kähler structure, that is an almost
complex structure J , which is compatible with g and so that the 2-form g(J ·, ·) is
closed.

Proof. From the maximality of b2, there exists a harmonic 2-form α which is non-
degenerate at a given point x. It is known that α is non-degenerate if and only if
αn 6= 0. Since M is geometrically formal, αn is harmonic and of constant norm.
It follows that α is non-degenerate all over M . Now, if we denote by A the skew-
symmetric endomorphism associated to α, we deduce from Proposition 5.2 that A2
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diagonalises with constant eigenvalues −λ2
i and constant rank associated eigenbun-

dles Ei. Moreover α =

p∑

i=1

λiωi (with λi 6= 0 since ω is non-degenerate) where ωi

belong to H2(M) and ωi is a complex structure on each Ei. Therefore ω =

p∑

i=1

ωi

is an almost Kähler structure which is compatible with g and so that the 2-form ω

is closed. �

6.2. Proof of flatness. We consider hereafter a geometrically formal almost-Kähler

manifold (Mn, g, J) (n = 2k) so that b2(M) =

(
n

2

)
. Let ω = g(J ·, ·) be the so-

called Kähler form of the almost Kähler structure. We first remark that the bi-type
splitting of Λ2 is preserved at the level of harmonic forms (note, by contrast with
the Kähler case that this need no longer be true in the case of an arbitrary almost
Kähler manifold).

Lemma 6.1. Any harmonic 2-form splits as α = α1+α2 where the harmonic α1, α2

are in λ1,1 and λ2 respectively.

Proof. Pick α in Λ2, which splits as α = α1+α2 with α1 in λ1,1 and α2 in λ2. Because
of formality we can assume w.l.o.g. that α is primitive. Again the formality tells us
that L?

α(ω ∧ ω) is harmonic and a straightforward computation shows the latter is
proportional to α1 − α2. This eventually proves the Lemma. �

Therefore, if b2 is maximal, both λ1,1 and λ2 are spanned by harmonic forms. We
need now see what geometric properties a harmonic 2-form in λ2 must satisfy. To
do so, recall that the first canonical Hermitian connection ∇ of the almost Kähler
(g, J) is given by

∇X = ∇X + ηX

for all X in TM . Here ∇ is the Levi-Civita connection of g and ηX = 1
2
(∇XJ)J .

It must perhaps be noted that η actually gives the intrinsic torsion of the U(n)-
structure induced by (g, J). The connection ∇ is metric and Hermitian, that is it
preserves both the metric and the almost-complex structure. The almost Kähler
condition i.e. that dω = 0 is given then given in terms of the intrinsic torsion tensor
as

(6.1) 〈ηXY, Z〉 + 〈ηYZ,X〉 + 〈ηZX, Y 〉 = 0

for all X, Y, Z in TM . The latter also implies that (g, J) is quasi-Kähler :

(6.2) ηJX = ηXJ

for all X in TM . Moreover we have

ηXJ = −JηX(6.3)

in other words η belongs to λ1 ⊗1 λ
2. The relations (6.1), (6.2) and (6.3) will be

used implicitly in subsequent computations.
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Lemma 6.2. Let (M 2k, g, J) be an almost-Kähler manifold and let α = g(F ·, ·) be
harmonic in λ2. Then

(6.4) (∇JXF )JY + (∇XF )Y = −2ηFXY

for all X, Y in TM .

Proof. From dα = 0 we have that a(∇α) = 0. But ∇Xα = ∇Xα+ < [F, ηX ]·, · >
for all X in TM and moreover a simple computation based on (6.1) shows that

a((X, Y, Z) →< [F, ηX ]Y, Z >) = a((X, Y, Z) →< ηFXY, Z >).

Therefore a(∇α+ηF ·) = 0 and since the tensor under alternation belongs to λ1⊗λ2

we use Lemma 3.2 to conclude that it is actually in λ1 ⊗2 λ
2 and the proof of the

claimed result follows by using the relations (6.2), (6.3). �

If Q is an endomorphism of M , let us define the action Q • η as

(Q • η)(X, Y, Z) = σX,Y,Z〈ηQXY, Z〉

for all X, Y, Z in TM . Note that this action is different from the usual action of
End(TM).

Lemma 6.3. Let (M 2k, g, J) be an almost-Kähler manifold and let α = g(F ·, ·) be
harmonic in λ2 with harmonic square. Then

(6.5) F 2 • η = 0.

Proof. That d?(α ∧ α) = 0 translates after a calculation overlapping that in the
proof of Proposition 4.1 into

σX,Y,Z〈(∇FXF )Y, Z〉 = 0

for all X, Y, Z in TM , where σ stands for the cyclic sum. Rewritten by means of
the canonical Hermitian connection and using (6.1) this gives

〈(∇FXF )Y, Z〉 + 〈(∇FY F )Z,X〉+ 〈(∇FZF )X, Y 〉

+ 〈ηXFY, FZ〉 + 〈ηY FZ, FX〉 + 〈ηZFX, FY 〉 = 0
(6.6)

We shall exploit now the algebraic symmetries of the above. Changing (Y, Z) in
(JY, JZ) and substracting from the original equation implies

2〈(∇FXF )Y, Z〉 − 2〈ηXFZ, FY 〉

+ 〈(∇FY F )Z + (∇JFY F )JZ,X〉 − 〈(∇FZF )Y + (∇JFZF )JY,X〉 = 0

or further, after using the relation 6.4

〈(∇FXF )Y, Z〉 − 〈ηXFZ, FY 〉

− 〈ηF 2YZ,X〉 + 〈X, ηF 2ZY 〉 = 0.
(6.7)

Now taking the cyclic sum and using (6.6) we get the desired result. �

Remark 6.1. On an almost Kähler manifold (M 2n, g, J) a harmonic form α in
λ2(M) with harmonic wedge powers need not vanish. This happens for instance
when α = g(I·, ·) for a g-compatible almost complex structure I, and hence defines
a complex-symplectic structure on M . Simple examples of the latter situation, which
are not hyperkähler, can be displayed on certain classes of nilmanifolds [3].
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From the Lemma above we find by J-polarisation that

[F,G] • η = 0

for all F,G dual to harmonic forms in λ2. Recall now the standard fact that the
splitting so(2k) = u(k)⊕m, where m consists in elements of so(2k) anti-commuting
with J , is such that [m,m] = u(k) for k ≥ 2. Therefore, if g is a formal metric on
M2k and b2(M) is maximal, we get that F • η = 0 for all F dual to forms in λ1,1

provided that dimM ≥ 6.

Lemma 6.4. If dim M > 6, the intrinsic torsion η must vanish identically.

Proof. It is enough to prove the statement at an arbitrary point m of M . Pick
an arbitrary unit vector V in TmM and let F be the skew-symmetric, J-invariant
endomorphism of TM which is J on E = 〈{V, JV }〉 and vanishes on H = E⊥. That
F • η = 0 says

〈ηFXY, Z〉 + 〈ηFYZ,X〉 + 〈ηFZX, Y 〉 = 0

for all X, Y, Z in TM . It follows that 〈ηVX, Y 〉 = 0 for all X, Y in H, hence ηVX is
inE for any X ∈ H. Moreover, since dim M > 6, there exists a unit vector U ∈ TM

so that (V, JV, U, JU,X, JX) is an orthogonal system. Let us consider the skew-
symmetric, J-invariant endomorphism G of TM defined by GV = U , GJV = JU ,
GU = −V , GJU = −JV and G vanishes on E ′⊥ where E ′ = 〈{V, JV, U, JU}〉.
Then

〈ηGUX, V 〉 + 〈ηGXV, U〉 + 〈ηGVU,X〉 = 0

This implies that 〈ηVX, V 〉 = −〈ηUX,U〉. Changing V in JV and using the anti-
J-invariance of η we get 〈ηVX, V 〉 = 0. Then

ηVX = 0

for all X ∈ H and ηVX = 〈X, V 〉ηV V + 〈X, JV 〉ηV JV for all X ∈ TM . But from
(6.2) it follows that ηV V = ηV JV = 0 and ηVX = 0 for all X ∈ TM . �

In other words (g, J) is a Kähler structure and the flatness of the metric follows
now from [8]. To finish the proof of Theorem 4.1 it remains to treat the case when
n = 4. In this situation, we notice that the bundles Λ± of (anti) self-dual forms
are trivialised by almost-Kähler structures satisfying the quaternionic identities and
using the well-known Hitchin lemma [10] we obtain that Λ± both contain a hyper-
Kähler structure which leads routineously to the flatness of the metric.
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