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1 Introduction

Practical calculation of transport properties of quan-
tum networks is often reduced to the scattering prob-
lem for a one-dimensional differential operator on a
quantum graph, see for instance [1, 2, 3, 4, 5]. Quan-
tum graph plays a role of a solvable model for the 2-d
network, see [6, 7, 8]. Basic element of the model is a
star-shape graph with a self-adjoint boundary condi-
tion at the node. It was commonly expected that the
realistic boundary condition is defined by the angles
between the wires at the node. For T-junction, [1],
the boundary condition is presented in terms of limit
values of the wave-function on the wires {ψi}3i=1 := ~ψ
and the values of the corresponding outward deriva-
tive {ψ′i}

3
i=1 := ~ψ′ at the node:

β−1ψ1 = ψ2 = ψ3 , βψ′1 + ψ′2 + ψ′3 = 0 , (1)

or in the form

P⊥0 ψ̄ = 0 , P0ψ̄
′ = 0 (2)

with the projection

P0 =
1

β2 + 2

 β2 β β
β 1 1
β 1 1

 ,

see [9, ?]. The scattering matrix of such a T-junction
is S = I − 2P0, see [1, 4, 10]. In [1] β is interpreted
as a free parameter which describes “the strength of
the coupling” between the leg and the bar of the T-
junction. In [11] the condition ( 2) is used for analysis
of spin-dependent transmission across the quantum
ring.

Based on [13], we extend the above boundary con-
dition (2) to any junction of equivalent wires and
interpret the corresponding parameter P0.

2 Intermediate Hamiltonian

Consider one body scattering problem on the junc-
tion Ω formed by few 2-d equivalent semi-infinite
wires Ωj , s = 1, 2, . . .m, attached to the quantum
well Ωint via the orthogonal bottom sections Γs, see
1, for simplest case of Y-junction m = 3: 3 The cor-

Figure 1: A junction

responding one-body Hamiltonian for the spin-less
electron is scaled via replacement of energy E by
the spectral parameter λ = ~−22m∗E to the stan-
dard Schrödinger operator with zero conditions on
the boundary ∂Ω, and a constant potential in the
wires q|ωs = q∞:

Lψ = −4 ψ + qψ. (3)

We assume, following [13], that the potential on the
vertex domain is defined by the scaled constant elec-
tric field E : q|Ωint

= qint(x) = 〈E , x〉, x ∈ Ωint. The
role of the non-perturbed Hamiltonian is played by
the Schrödinger operator Lout in the wires with zero
boundary conditions on the union Γ = ∪sΓs of the
bottom sections of the wires, which play roles of solid
walls, separating the vertex domain from the wires:

ψ|Γ = 0. (4)
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The eigenfunctions of Lout in the wires Ωs : 0 < xs =
x < ∞, 0 < ys = y < δ are combined from running
waves

exp(±i
√
λ− π2l2δ−2 − q∞x)

√
2/δ sinπly/δ

:= exp(±iplx) el
s

Hereafter we used on the wires ωs the corresponding
local coordinates x, y, 0 < x < ∞, 0 < x < δ, and
denote el

s〉〈el
s := P l

s. The eigenfunctions of the oper-
ator Lint defined by (3,4) in the vertex domain Ωint

are standing waves. Replacement of the solid wall
condition (4) by the matching condition is a strong
perturbation blending the standing waves on the ver-
tex domains with the running waves in the wires.
This is a perturbation on the continuous spectrum,
so the corresponding analytic perturbation proce-
dure does not converge. In [?] we suggested a modi-
fied analytic perturbation procedure based on intro-
duction of an Intermediate Hamiltonian obtained via
appropriate splitting, see [14], of L.

Assume that the scaled Fermi level in the vires
lies, for instance, in the middle f the first spectral
band 2m∗EF ~−2 := λF = π2δ−25/2 + q∞. In that
case all branches of the continuous spectrum with
thresholds π2l2δ−2 +q∞, l ≥ 2, are closed, that is all
exponential solutiLns exp±iplx el

s, , l ≥ 2, of the
homogeneous equation −4ψ+qψ = λψ in the wires
are exponentially decreasing. Impose, additionally
to (1), the semi-transparent boundary condition on
the bottom section:

u
∣∣
Γ
⊥E+, E+ =

m∨
s=1

el
s, PE+ := P+. (5)

This condition prevents excitations of the first chan-
nel H+ = E+ × L2(R+) in the wires from enter-
ing into the vertex domain, and, vice versa, exit-
ing from the vertex domain into the wires. However
it does not stop the excitations of higher channels
H− = [L2(Γ)	E+]×L2(R+) := E−×L2(R+). The
corresponding operator LF is split into the orthogo-
nal sum of the trivial operator in the open first chan-
nel H+

lFu = −d
2u

dx2
+ [q∞ + π2δ−2]u, ,

with zero boundary condition on ∂ωs, and the Inter-
mediate Hamiltonian LF in the orthogonal comple-
ment HF = {L2(Ω)	H+}. The spectrum σa(lF ) is
just the first spectral branch [π2/δ2 + q∞, ∞) and
the continuous spectrum of LF is ∪l≥2[l2π2/δ2 +
q∞, ∞) := σa(lF ). There is a finite number of eigen-
values of LF on the first spectral band [π2/δ2 +
q∞, 4π2/δ2 + q∞] := ∆1 and a countable number
of embedded eigenvalues accumulating at infinity.

Figure 2: Spectrum of LF

3 Scattering matrix via Inter-
mediate DN map

Usually the Scattering matrix on the quantum net-
work is obtained via matching exponential solutions
in the wires to the solutions of the homogeneous
Schrödinger equation inside the vertex domain, see,
for instance [15]. This approach requires solving an
infinite algebraic system. We consider the boundary
problem for the Intermediate equation:

−4 ψ + qψ = λψ, ψ ∈ L2(ω),

ψ|∂Ω = 0, ψ|Γ = ψΓ ∈ E+, =λ 6= 0. (6)

The solution ψ exists for all complex λ and has nor-
mal limit values on the continuous spectrum. We
introduce the Dirichlet-to-Neumann map of the in-
termediate Hamiltonian (DN-map) as

DNF : ψΓ −→ P+
∂ψ

∂n

∣∣
Γ
. (7)

It is a 3 × 3 matrix-function which is obtained via
differentiation of the resolvent of the intermediate
operator with respect to exterior normals, and sub-
sequent restriction onto Γ

DNF (y, η) = −P+
∂2GF

λ (y, η)
∂ny∂nη

P+.

It has the spectral representation on the complement
of the spectrum of σ(LF )

DNF (λ) =
∑

r

P+
∂ΦF

r (ξ)
∂n 〉 〈P+

∂ΦF
r

(ξ′)

∂n

λ− λr
+K(λ), (8)

where the summation is extended over the discrete
spectrum of LF and K(λ) contains an integral over
continuous spectrum. The Scattering matrix of L
is obtained via matching of the scattering Ansatz in
the open channel of the wires with p = p1

e
ipξ

e+ + e
−ipξ

S(p)e+ (9)

to the limit values on the spectrum, =λ → 0, of the
solution of the above intermediate boundary problem
(7):

ip
[
e+ − S(p)e+

]
= DNF (λ)

[
e+ + S(p)e+

]
.
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Solving this equation we obtain, see [13], we obtain
the formula for the scattering matrix of the operator
L on the first spectral band ∆ in terms of LF by the
formula

S(p) =
DNF (λ) + ipP+

−DNF (λ) + ipP+

. (10)

The DN-map DNF of the intermediate Hamiltonian
L

F
is connected with the standard, see [12], DN-map

DN of the operator Lint on the quantum well Ω by
the formula

DNF = P+DNP+ − P+DNP− D−1P−DNP+.
(11)

Here K− = − ⊕
∑

l>1

∑
s plP

l
s := − ⊕

∑
l>1 plPl,

|K−| ≥ πδ−1
√

3/2, and P− := ⊕
∑

l>1 Pl = I 	 P+

and D = P−DNP− − K− . Near the eigenvalue λ0

the DN-map can be represented as

DN (λ) =
φ0〉〈φ0

λ− λ0
+K0, (12)

where φ0 = ∂Φ0
∂n |Γ and K0 - the contribution from

other eigenvalues/eigenfunctions. The spacing be-
tween the eigenvalues of Lint relates to the diame-
ter dint of Ωint as ρ0 = minr 6=0 |λ0 − λr| = O(d−2

int.
Due to the spectral estimate |K0(λ0)| ≈ 1/

√
ρ0 it’s

matrix elements K±,± := P±K0P± in the decom-
position I = P+ ⊕ P− of the unit operator in L2(Γ)
are estimated by 1/dint. For relatively thin networks
the analytic perturbation procedure for DNF can be
developed based on (11), with the small parameter
δ/dint.

Assume that there exist only one eigenvalue λ0 of
Lint on the essential spectral interval ∆T := [λF −
2~−2m∗κT ≤ λ ≤ λF − 2~−2m∗κT ] near the scaled
Fermi level. Then for δ/dint << 1 the denominator
of (11) near λ0 can be represented, with P−φ

−
:=

φ
−

0 := as

D(λ) ≈ φ
−

0 〉〈φ
−

0

λ− λ0
+K−− −K− :=

φ
−

0 〉〈φ
−

0

λ− λ0
0

+ k

and the whole expression (11) can be calculated via
analytic perturbation procedure, since |k−1| ≈ δ[1 +
δ/dint]−1 << 1:

DN
F

≈ φ
F

0
〉 (λ− λF

0 )−1 〈φ
F

0
, (13)

with, λF
0 = λ0 + 〈P−φ0, k

−1
P−φ0〉 ≈ λ0 and φF

0 =
P+φ0 − K+−k

−1 P−φ0 ≈ P+φ0. For low tempera-
ture only electrons with energy close to Fermi level
EF contribute to transport phenomena. Hence DNF

may be substituted by the single resonance term
P+φ0 〉 〈P+φ0

λ0−λ , thus resulting in the approximate ex-
pression for the scattering matrix on ∆T :

Sapprox(λ) =
ipP+ −

P0φ
0
〉 〈P+φ

0
λ0−λ

ipP+ + P0+φ0 〉 〈P+φ0
λ0−λ

. (14)

See [13] and more details in [16].

4 Boundary condition
at the junction

The approximate scattering matrix can be formally
obtained from the energy-dependent boundary con-
dition at the vertex imposed onto the scattering Ansatz
(9) in the wires:

ip[I − Sapprox(λ)]~ψ = [I + Sapprox(λ)]~ψ′. (15)

The polar terms in the numerator and in the denom-
inator of (14) have the dimension cm−1 and can be
represented via the relevant one-dimensional orthog-
onal projection P0 := ~e0〉 〈~e0 with ~e0 := (e10, e

2
0, . . . e

n
0 ) =‖

~φ0 ‖−1 ~φ0 := α−1~φ0 . Then ~φ0〉 〈~φ0 = α
2
P0 . Denot-

ing by P
⊥

0
the complementary projection I − P

⊥

0
in

L2(Γ), we obtain

Sapprox(λ) = P
⊥

0
+

[
ip(λ− λ0) + α

2

ip(λ− λ0)− α2

]
P0 (16)

≡ P
⊥

0
+ Θ(λ)P0 .

The factor Θ on the essential spectral interval ∆T ,
for low temperature 2πm ∗

√
3/2κT << δα2~2 is

close to−1. Then, in first approximation, the energy-
dependent boundary condition (15) is reduced on ∆T

to iP
⊥

0
ψ − P0ψ

′ ≈ 0, or, due to orthogonality of
P0 , P

⊥

0
, to P

⊥

0
~ψ ≈ 0; P0

~ψ′ ≈ 0. This condition coin-
cides with the above Datta condition (1) presented
in form (2). Our analysis reveals the meaning of the
projection P0: it coincides with the projection onto
the one-dimensional subspace defined by the vector
P+

∂φ0(ξ)
∂n |Γ of boundary values of the normal deriva-

tives of the resonance eigenfunction, projected onto
E+.

5 Example

Consider a two-dimensional quantum network 3 con-
structed as an asymmetric T-junction of three straight
quantum wires width π/2 at the vertex square Ωint :
0 < ξ1 < π, 0 < ξ2 < π. The first wire ω1 =
{ξ1 < 0, π/2 < ξ2 < π} is attached orthogonally to
the left side of the square on Γ1 = {ξ1 = 0, π/2 < ξ2 < π},
the second wire ω2 is attached in the middle of the
upper side on Γ2 = {π/4 < ξ1 < 3π/4, ξ2 = π, }, and
the third wire ω3 is attached on the middle part Γ3 =
{ξ1 = π, π/4 < ξ2 < 3π/4, } of the right side of Ωint.
The first spectral band in the wires is ∆1 = [4, 16].

3



Figure 3: Simplest asymmetric T-junction

The cross-section eigenfunctions in the open chan-
nels in the wires are

e1
+

∣∣∣∣
Γ1

=
2√
π

sin 2ξ2, e2+

∣∣∣∣
Γ2

=
2√
π

cos 2ξ1,

e
3

+

∣∣∣∣
Γ3

=
2√
π

cos 2ξ2,

The Dirichlet Laplacian −∆int on Ωint has on ∆1 the
eigenvalues λ0 = 5 ,λ1 = 8, λ2 = 10 and λ3 = 13 with
normalized eigenfunctions Ψs, Φ0(ξ) = 2

π sin ξ1 sin 2ξ2
. The boundary currents of Φ0 on Γs are :

∂Φ0

∂n

∣∣∣∣
Γ1

= − 2
π

sin 2ξ2 ,
∂Φ0

∂n

∣∣∣∣
Γ2

= − 4
π

sin ξ1,

∂Φ0

∂n

∣∣∣∣
Γ3

= − 2
π

sin 2ξ2 .

Assume that the scaled Fermi level is λF = 4.33 cm−2.
The corresponding eigenfunction of −∆int is Φ0(ξ) =
2
π sin ξ1 sin 2ξ2 . Consider the Scattering problem for
the network Ω. The electrons are supplied in the
first spectral band from the second wire across the
bottom section Γ2 and exit across Γ1, Γ3. Due to
orthogonality of the cross-section eigenfunction of
the open channel to the boundary currents of the
eigenfunctions Φ′

0, Φ′
3, the corresponding modes are

not excited. An essential link to the closed channels
is supplied only by Φ0, the contribution from other
eigenfunctions either vanish, or we neglect them due
to the factors (λ0 − λs) in the denominator. Taking
into account only the link to H−|ω3 we obtain the
equation for the eigenvalue λF

0 of the Intermediate
Hamiltonian:

1
λ0 − 5

∫
Γ3

∣∣∣∣P− ∂Φ0

∂n

∣∣∣∣2dΓ3 +
√

16− 5 := D−(λ0) =

√
11 [0.67 + λ0 − 5], (17)

and find λF
0 = 4.33 = λF . The boundary current

of the corresponding eigenfunction essentially coin-
cides with one of Ψ0. Projections of the resonance
boundary current onto E+|Γ1,2,3 are:

φ̂1
0 =

∫
Γ1

∂Φ0

∂n

∣∣∣∣
Γ1

e1+

∣∣∣∣
Γ1

dξ2 = − 1√
π

= −0.56,

φ̂2
0 =

∫
Γ2

∂Φ0

∂n

∣∣∣∣
Γ2

e2
+

∣∣∣∣
Γ2

dξ1 = 0.43, φ̂3
0 = 0.

Then the normalized vector of the boundary current
is e0 = (−0.8, 0.6, 0), and the boundary conditions
at the junction for low temperatures are represented
by the formulae (2) with P0 = e0〉 〈e0 , which is dif-
ferent from the boundary condition for a symmetric
T-junction in [1]. For the higher temperatures the
boundary condition is energy dependent and can be
represented in form (15), with the approximate scat-
tering matrix

Sappr(p) =
i
√
λ− 4P+ − 0.15 P0

λ−4.33

i
√
λ− 4P+ + 0.15 P0

λ−4.33

.
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