On the Order Hereditary Closure Preserving Sum Theorem

Jianhua Gong Ivan L. Reilly

Abstract

The main purpose of this paper is to prove the following two theorems, an order hereditary closure preserving sum theorem and an hereditary theorem:

(1) If a topological property \mathcal{P} satisfies (\sum') and is closed hereditary, and if \mathcal{V} is an order hereditary closure preserving open cover of X and each $V \in \mathcal{V}$ is elementary and possesses \mathcal{P} , then X possesses \mathcal{P} .

(2) Let a topological property \mathcal{P} satisfy (\sum') and (β) , and be closed hereditary. Let X be a topological space which possesses \mathcal{P} . If every open subset G of X can be written as an order hereditary closure preserving (in G) collection of elementary sets, then every subset of X possesses \mathcal{P} .

Keywords: elementary, order hereditary closure preserving, sum theorem.

2000 AMS Subject Classification: 54D20

1 Introduction

R.E.Hodel [1] obtained sum theorems and an hereditary theorem for topological spaces. S.P.Arya and M.K.Singal [1, 2] and G.Gao [4] have improved some of Hodel's sum theorems. We provide in this paper further improvements of these theorems.

A topological property \mathcal{P} is said to be hereditary (closed hereditary) if when \mathcal{P} is possessed by a topological space X, it is also shared by every subspace (closed subspace) of X. It is well known that covering properties such as paracompactness, subparacompactness, countable paracompactness, pointwise paracompactness, θ -refinement and collectionwise normality satisfy the following result which is denoted by (β).

 (β) : If every open subset of a space X has a property \mathcal{P} , then every subset of X has the property \mathcal{P} .

Y.Katuta [6] introduced the notion of an order locally finite family of subsets of a topological space. Later G. Gao [4] also introduced the notion of an order hereditary closure preserving family of subsets of a topological space.

A family $\{A_{\gamma} : \gamma \in \Gamma\}$ of subsets of a topological space X is called *hereditary* closure preserving relative to a subspace A of X if for any $\Gamma' \subset \Gamma$ and any $E_{\gamma} \subset A_{\gamma}$ the following is true for all points in A.

$$\overline{\bigcup_{\gamma\in\Gamma'}E_{\gamma}}=\bigcup\overline{E}_{\gamma}$$

Definition 1.1. (G.Gao [4]) A family $\{A_{\alpha} : \alpha < \tau\}$ (α and τ are ordinal numbers) is defined to be order hereditary closure preserving if for every or-

dinal number $\beta < \tau$, the family $\{A_{\alpha} : \alpha < \beta\}$ is hereditary closure preserving relative to A_{β} .

It is not difficult to see that the following implications are true for a family of subsets of a topological space. However, the converse implications are not true in general.

Proposition 1.2. Given a family of subsets of a topological space, then

order locally finite \Rightarrow order hereditary closure preserving

Definition 1.3. (*R.E.Hodel* [5]) Let N be the set of all positive integers. An open subset V of a topological space is called an elementary set if $V = \bigcup_{i=1}^{\infty} V_i$, where each V_i is open and $\overline{V_i} \subset V$ for all $i \in N$.

The following two lemmas show that each open F_{σ} set in a normal space is exactly an elementary set.

Lemma 1.4. Every elementary set in a topological space is an open F_{σ} set.

Proof. Suppose the open subset V of a topological space is an elementary set, then $V = \bigcup_{i=1}^{\infty} V_i$, V_i is open and $\overline{V_i} \subset V$ for all $i \in N$. Hence $\bigcup_{i=1}^{\infty} \overline{V_i} \subset V$. On the other hand, $V_i \subset \overline{V_i}$ for all $i \in N$, so $V = \bigcup_{i=1}^{\infty} V_i \subset \bigcup_{i=1}^{\infty} \overline{V_i}$. Therefore, $V = \bigcup_{i=1}^{\infty} \overline{V_i}$, it follows that V is an open F_{σ} set.

Lemma 1.5. Every open F_{σ} subset of a normal space is an elementary set.

Proof. Let V be an open F_{σ} set of a normal space X, then $V = \bigcup_{i=1}^{\infty} W_i$, W_i is closed and $W_i \subset V$ for all $i \in N$. By the normality of X, for each W_i there exists an open set V_i such that $W_i \subset V_i \subset \overline{V_i} \subset V$. Thus, $V = \bigcup_{i=1}^{\infty} W_i \subset \bigcup_{i=1}^{\infty} V_i$ and $\bigcup_{i=1}^{\infty} V_i \subset V$. That is $V = \bigcup_{i=1}^{\infty} V_i$ where each V_i is open and $\overline{V_i} \subset V$ for all $i \in N$. Therefore V is an elementary set.

Notice that an open F_{σ} set may fail to be an elementary set in non-normal spaces, as the following example shows.

Example Let X be the set N of all positive integers with cofinite topology. Then X is a T_1 space which is not a normal space. Take the set $V = N/\{1, 2, 3\}$, then V is an open set. Furthermore, $V = \bigcup_{i=4}^{\infty} \{i\}$. Since X is a T_1 space, each singleton $\{i\}$ is a closed subset, so that V is an open F_{σ} set. For any subset S of X we have

$$\overline{S} = \begin{cases} S & \text{if } S \text{ is finite,} \\ X & \text{if } S \text{ is infinite.} \end{cases}$$

Since every non-empty open subset S of X is infinite, for every open subset S of V,

$$\overline{S} = X \nsubseteq V.$$

So V is not an elementary set.

We say that a topological property \mathcal{P} satisfies the Locally Finite Closed Sum Theorem if the following is satisfied and denote it by (\sum) .

 (\sum) : Let $\{F_{\alpha} : \alpha \in A\}$ be a locally finite closed cover of a topological space X and let each F_{α} possess a property \mathcal{P} , then X possesses the property \mathcal{P} .

We say that a topological property \mathcal{P} satisfies the Hereditary Closure Preserving Closed Sum Theorem if the following is satisfied and denote it by (\sum') .

 (Σ') : Let $\{F_{\alpha} : \alpha \in A\}$ be an hereditary closure preserving closed cover of a topological space X and let each F_{α} possess a property \mathcal{P} , then X possesses the property \mathcal{P} .

Observe that $(\Sigma') \Rightarrow (\Sigma)$.

For example, if the topological property \mathcal{P} is one of paracompactness, subparacompactness, pointwise paracompactness, meso-compactness, θ -refinement, weak θ -refinement and ortho-compactness, then the property \mathcal{P} satisfies (Σ) . If the topological property \mathcal{P} is one of paracompactness and T_1 mesocompactness, then the property \mathcal{P} satisfies (Σ') .

2 A Sum Theorem

In this section, we assume that the topological property \mathcal{P} satisfies (\sum') (hence (\sum)) and is closed hereditary.

Theorem 2.1. Let $\mathcal{V} = \{V_{\alpha} : \alpha < \tau\}$ be an order hereditary closure preserving open cover of a topological space X, and let each V_{α} be an elementary set which possesses a topological property \mathcal{P} . Then X possesses the topological property \mathcal{P} .

Proof. Since each V_{α} is an elementary set and possesses the property \mathcal{P} ,

$$V_{\alpha} = \bigcup_{i=1}^{\infty} V_{\alpha,i}, \qquad \overline{V_{\alpha,i}} \subset V_{\alpha}, \quad \alpha < \tau, i \in N,$$
(1)

where each $V_{\alpha,i}$ is an open set. Then the closed set $\overline{V_{\alpha,i}}$ possesses the property \mathcal{P} .

For each $i \in N$, let

$$\mathcal{V}_i = \{ V_{\alpha,i} : \alpha < \tau \}.$$

For each $\alpha < \tau$, let

$$F_{0,i} = \overline{V_{0,i}}, \qquad F_{\alpha,i} = \overline{V_{\alpha,i}} - \bigcup_{\beta < \alpha} V_{\beta}, \quad 0 < \alpha < \tau.$$
(2)

Then each closed set $F_{\alpha,i}$ possesses the property \mathcal{P} . And we claim that the family $\{F_{\alpha,i} : \alpha < \tau\}$ is an hereditary closure preserving collection.

Without loss of generality, for each $\alpha < \tau$, let $A_{\alpha,i} \subset F_{\alpha,i}$, we need to prove

$$\overline{\bigcup_{\alpha < \tau} A_{\alpha,i}} = \bigcup_{\alpha < \tau} \overline{A}_{\alpha,i}.$$

Obviously, it is enough to prove

$$\overline{\bigcup_{\alpha<\tau}A_{\alpha,i}}\subset\bigcup_{\alpha<\tau}\overline{A}_{\alpha,i}.$$
(3)

Suppose $x \in \overline{\bigcup_{\alpha < \tau} A_{\alpha,i}}$, since \mathcal{V} is a cover of X, we may assume $x \in V_{\beta_0}$. Now the inequality (3) can be expressed in another way:

$$\left(\overline{\bigcup_{\alpha<\beta_{0}}A_{\alpha,i}}\right) \quad \cup \quad \overline{A}_{\beta_{0},i} \quad \cup \quad \left(\overline{\bigcup_{\beta_{0}<\alpha<\tau}A_{\alpha,i}}\right)$$
$$\subset \quad \left(\bigcup_{\alpha<\beta_{0}}\overline{A}_{\alpha,i}\right) \quad \cup \quad \overline{A}_{\beta_{0},i} \quad \cup \quad \left(\bigcup_{\beta_{0}<\alpha<\tau}\overline{A}_{\alpha,i}\right). \tag{4}$$

According to (2), $V_{\beta_0} \cap F_{\alpha,i} = \emptyset$, $\beta_0 < \alpha < \tau$. So $X - V_{\beta_0} \supset \bigcup_{\beta_0 < \alpha < \tau} F_{\alpha,i}$. Since $X - V_{\beta_0}$ is a closed set, then $X - V_{\beta_0} \supset \overline{\bigcup_{\beta_0 < \alpha < \tau} F_{\alpha,i}}$, that is $x \notin \overline{\bigcup_{\beta_0 < \alpha < \tau} F_{\alpha,i}}$.

Therefore $x \notin \overline{\bigcup_{\beta_0 < \alpha < \tau} A_{\alpha,i}}$. If $x \in A_{\beta_0,i}$, the inequality (4) is satisfied. We may assume $x \in \overline{\bigcup_{\alpha < \beta_0} A_{\alpha,i}}$. Since \mathcal{V} is order hereditary closure preserving, $\{V_\alpha : \alpha < \beta_0\}$ is hereditary closure preserving at every point of V_{β_0} . Notice that $x \in V_{\beta_0}$, thus $x \in \bigcup_{\alpha < \beta_0} \overline{A}_{\alpha,i}$. So the inequality (2) is proved. Let $F_i = \bigcup_{\alpha < \tau} F_{\alpha,i}$, then F_i possesses the property \mathcal{P} by applying (Σ') , for all $i \in N$.

For each $i \in N$, let

$$\mathcal{V}_i^* = \bigcup_{\alpha < \tau} \{ V_{\alpha, i} \},$$

then $\mathcal{V}_i^* \subset F_i$ by the well order property. Hence $\{\mathcal{V}_i^*\}$ and $\{F_i\}$ are open covers and closed covers of the space X respectively. Finally, let

$$H_1 = F_1, \qquad H_i = F_i - \bigcup_{j=1}^{i-1} \mathcal{V}_j^*, \quad i = 2, 3, \dots$$

then $\{H_i\}$ is a locally finite closed cover of X and each H_i possesses the property \mathcal{P} . It follows from (Σ) that X possesses the property \mathcal{P} .

Apply Proposition 1.2 to Theorem 2.1 above, to obtain the following two corollaries.

Corollary 2.2. (S.P.Arya and M.K.Singal [2]) Let \mathcal{V} be a σ -hereditary closure preserving cover of a topological space X and each $V \in \mathcal{V}$ be an elementary set which possesses a topological property \mathcal{P} , then X possesses the property \mathcal{P} .

Corollary 2.3. (R.E.Hodel [5]) Let \mathcal{V} be a σ -locally finite cover of a topological space X and each $V \in \mathcal{V}$ be an elementary set which possesses a topological property \mathcal{P} , then X possesses the property \mathcal{P} .

3 Two Hereditary Theorems

We assume that the topological property \mathcal{P} in this section satisfies (\sum') (hence (\sum)), (β) and is closed hereditary.

Theorem 3.1. Let X be a topological space which possesses a topological property \mathcal{P} . If every open subset G of X can be written as an order hereditary closure preserving (in G) collection of elementary sets, then every subset of X possesses the property \mathcal{P} .

Proof. Let $\mathcal{V} = \{V_{\alpha} : \alpha < \tau\}$ be order hereditary closure preserving at every point of G, and let $\mathcal{V}^* = \bigcup_{\alpha < \tau} V_{\alpha} = G$, where each $V_{\alpha}, \alpha < \tau$ is an elementary subset of X. We may assume

$$V_{\alpha} = \bigcup_{i=1}^{\infty} V_{\alpha,i}, \quad \overline{V_{\alpha,i}} \subset V_{\alpha}, \quad \alpha < \tau$$

where each $V_{\alpha,i}$ is an open set. Let

$$F_{\alpha,1} = \overline{V_{\alpha,1}}, \quad F_{\alpha,i} = \overline{V_{\alpha,i}} - \bigcup_{j < i} V_{\alpha,j}, \quad i = 2, 3, \dots$$

Then $\{F_{\alpha,i}\}$ is a locally finite cover of V_{α} , so it is an hereditary closure preserving cover of V_{α} . Since each $F_{\alpha,i}$ is a closed subset of X and the property \mathcal{P} is closed hereditary, then each $F_{\alpha,i}$ possesses the property \mathcal{P} . According to (\sum') , each subspace V_{α} possesses the property \mathcal{P} . Apply Theorem 2.1 to the subspace G, then G possesses the property \mathcal{P} . Since (β) holds, then every subset of X possesses the property \mathcal{P} . \Box Since Lemmas 1.4 and 1.5 state that open F_{σ} sets are equivalent to elementary sets in a normal space, they give the following theorem immediately.

Theorem 3.2. Let a normal space X possess a topological property \mathcal{P} . If every open subset G of X can be written as an order hereditary closure preserving (in G) collection of open F_{σ} sets, then every subset of X possesses the property \mathcal{P} .

Definition 3.3. (C.H.Dowker [3]) A normal space X is totally normal if every open subset G of X can be written as a locally finite (in G) collection of open F_{σ} sets of X.

Finally, Theorem 3.2 and Proposition 1.2 imply the following corollary.

Corollary 3.4. (*R.E.Hodel* [5]) Let X be a totally normal space and X have a topological property \mathcal{P} , then every subset of X has the property \mathcal{P} .

References

- S.P. Arya and M.K.Singal, More sum theorems for topological spaces, Pacific J. Math. 59 (1975), 1-7.
- [2] S.P. Arya and M.K.Singal, On the closure preserving sum theorem, Proc. Amer. Math. Soc. 53 (1975), 518-522.
- [3] C.H. Dowker, Inductive-dimension of completely normal spaces, Quart.
 J. Math. 59 (1975) 1-7.
- [4] G. Gao, On the closure preserving sum theorems, Acta Math. Sinica 29 (1986), 58-62.

- [5] R.E. Hodel, Sum theorems for topological spaces, Pacific J. Math. 30 (1969), 59-65.
- [6] Y. Katuta, A theorem On paracompactness of product spaces, Proc. Japan. Acad. 43 (1967), 615-618.

Jianhua Gong

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland, New Zealand Email: gong@math.auckland.ac.nz

Ivan L. Reilly

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland, New Zealand Email: reilly@math.auckland.ac.nz