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Abstract

This paper is part of a program to study the conjecture of E.C. Dade on counting characters in
blocks for several finite groups. In this paper, we verify Dade’s invariant conjecture for the Chevalley
groupsGa(p%) in the defining characteristic whgn#£ 2 or 3. This implies Dade’s final conjecture
whenp # 2 or 3.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite groupp a prime dividing the order off and B a p-block of G. Dade

[7] generalized the Knérr—Robinson version [13] of the Alperin weight conjecture (see [1])
and presented his ordinary conjecture exhibiting the number of ordinary irreducible char-
acters with a fixed defect in a givemblock B in terms of an alternating sum of related
values forp-blocks of certainp-local subgroups (i.e. the-subgroups and their normal-
izers) of G. He also announced that his final conjecture can be confirmed by verifying it
for all non-abelian finite simple groups [8]; in addition, the invariant form of the conjec-
ture is equivalent to the final conjecture if a finite group has both trivial Schur multiplier
and cyclic outer automorphism group. Dade’s invariant conjecture has been verified for
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the groupsGa(g) in the defining characteristic when= 2 or 3* [2] and non-defining
characteristics [3]. Our goal in this paper is to verify Dade’s invariant conjecture for the
groupG2(p%) in the defining characteristic when#£ 2 or 3, using the character tables of
G2(g) and its Borel and parabolic subgroups [4,6]. Together with [12], this completes the
verification of the conjecture for any blocks with positive defect of these groups.

The outline of this paper is as follows. In Section 2, we fix some notation and state
Dade’s invariant conjecture. In Section 3, we prove two lemmas on the parameter sets. In
Section 4, we verify Dade’s invariant conjecture @s(p?) whenp # 2 or 3. Tables 2-5
provides details of characters with a fixed defect.

2. Dad€'sinvariant conjecture

Let R be ap-subgroup of a finite groug. ThenR isradical if O,(N(R)) = R, where
0,(N(R)) is the largest normap-subgroup of the normalize¥ (R) = Ng(R). Denote
by Irr(G) the set of all irreducible ordinary characters @f and by BIKG) the set of
p-blocks. We denote the principal block 6fby Bg. If H < G, B € Blk(G), andd is an
integer, we denote by Iff, B, d) the set of characters € Irr (H) satisfying dx) = d and
B(x)¢ = B (in the sense of Brauer), wher¢)d = Iogp(|H|p) - Iogp(x(l)p) andB(x)
is the block ofH containingy.

Given ap-subgroup chain

C: Php<Pi<---<Py
of G, define the lengthC| =n, Cy: Po< P1 < --- < P, C(C) = Cg(Py,), and
N(C)=Ng(C)=Ng(Po) N NGg(P1)N---N NG (Pp).
The chainC is said to beadical if it satisfies the following two conditions:

(@) Po= 0,(G) and
(b) Py = O0,(N(Cy)) for L<k < n.

Denote byR = R(G) the set of all radicap-chains ofG.

Suppose 1> G — E — E — 1 is an exact sequence, so tlais an extension o6
by E. ThenE acts onR by conjugation. GiverC € R andg € Irr(Ng(C)), let N (C, ¢)
be the stabilizer ofC, ¢) in E, and

Ng(C,9) =Ne(C,9)/NG(C).

For B € BIk(G), an integerd > 0 andU < E, let k(Ng(C), B,d, U) be the number of
characters in the set

Irr(Ng(C), B.d, U) ={g € Irr(Ng(C), B,d): Ng(C,9)=U}.

Dade’s invariant conjecture is stated as follows.
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Dade's Invariant Conjecture [8]. If O,(G) =1 and B is a p-block of G with defect
group D(B) # 1, then

> ~DK(NG(C), B.d, U) =0,
CeR/G

whereR /G is a set of representatives for tiig-orbits of R.

Let A = Aut(G) andO = Out(G) be the automorphism and outer automorphism groups
of G, respectively. Then we may suppa8e= Out(G). If moreover, OWG) is cyclic, then
we set

k(Ng(C), B,d,|U|) =K(Ng(C),B,d,U).

Dade’s invariant conjecture is equivalent to his final one (see [8}) fifas a trivial Schur
multiplier and a cyclic outer automorphism group.df= G2(g), then Ou{G) is cyclic
and the Schur multiplier of; is trivial except whery = 3 or 4, in which casé&,(3) and
G2(4) have Schur multipliers 3 and 2, respectively.

3. Twolemmas

Let G = Go(p“) with p #£ 2 or 3, letW be a Borel subgroup?, Q the parabolic sub-
groups ofG. Let O = Out(G). If p #2 or 3, thenO = (@) andA = G x («), wherex is
a field automorphism of order.

If L e{G,W, P, Q}, then the character table éfis given in [4,6]. We will follow the
same notation. LeX = X (¢) be a parameter set given by [4], and 1K O. Denote by
Cx(U) the set of fixed-points ok under the action of/.

Lemma 3.1. In the notation of{4] (cf. also[9,10]), suppose # 2 or 3, g = p*, andz | a.
Let X (p“) be one of

Ro(p*), 2Ra2(p)UPTa(p®), 2Ra(p*)U’Ti(p®). ZRa(p®)U?s1(p“),
2Ry (p) U281 (p").
Supposéa) acts onX (p?) by x% = px and H = («!). Then
Cx(poy(H) = X (p")
as H-sets, wherer acts similarly onX (p*).

Proof. (i) Suppose € Ro(p?), and

t

CRro(pe)(H) = {x € Ro(pa): x“ =x} = {x € Ro(pa): p'x =x}.
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We identify Ro(p®) with Z,«_1. Thenk € Cgype)(H) if and only if (p' — Dk =0 in
Zpa_q (i.e.(p" — Dk =0modZy.«_1). Let

Li=((p" - )/(0' ~ D) <Zq 2

Thenk € Crypey(H) if and only if k € L;. But L; >~ Z,_1 = Ro(p") as H-sets, so
Cro(pt)(H) =~ Ro(p') as H-sets.

(i) Let f = (p? —1)/(p* — 1) and Kz = (f) < Z,2_3 = To(p®), SO thatKy ~
To(p') = Z,2_4. Suppose = {i, gi} € T1(p*), and

t

Copy ey (H) = {x € °Ta(p"): x* =x} = {x € *Ta(p*): (p"i, p'qi) = (i, q)}.
Thenx € Car, (e (H) if and only if p'i =i or p'i = qi sincep'qi = qi is equivalent to
pli =i,andp'qi =i is equivalent tgp’i = gi. In both cases, € K,.

If 2¢ | a, then(p’ + 1) | (p* — 1), so that

pt-1
f=p2, 1@+tD

and by definition; ¢ T1(p“). This is impossible, so that 2a.
Supposex = {i, ¢i} such that € Ky, andi = (p’ + 1)k for somek € K»,. Theni
(p" + 1) f). Since

a

1
(W +0) ="+ D,

it follows that i ¢ Th(p®), which is impossible. Thus, € T1(p’) and x = {i,qi} =
{i, p'i} € °T1(p"). Here we identifyK,, with To(p'). Conversely, suppose= {i, p'i} €
2T1(p') and 2 { a. Identify K with To(p"). Thenx = {i, p®i} € Caz,(,o)(H). It follows
that

le(pt) if 2¢ J(a,

C o (H) >~
2ra(p0) () {@ if2¢ | a

asH-sets.
(iii) SupposeY (p?) = 2R2(p?), andx = {(i, j), (j,i)} € Y (p?). Thenx € Cypay(H)
ifand only if p'i =i andp’j = j or p'i = jandp’j =i in Ro(p*) =Z4-1. Let

Vo(o) = HG@. 0. G0} eCrpoy(H): pli=i, p'j=j} ife=1,
¢ Ha. ). G} eCypay(H): pli=j, p'j=i} ife=2

If x € Ya(p®), theni, j € Ly ~Zy_1 = Ro(p"); and ifi — j =01in L;, theni — j =0
in Ro(p?), which is impossible, so thdt, j) € R2(p'), and hence € Y (p'). Conversely,
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each element of (p’) is an element o€y <) (H) after identifyingL, with Ro(p"). Thus
Y1(p?) ~Y(p')

asH-sets.

Supposex = {(i, j), (j,i)} € Ya(p®). Then(p? — 1)i =0 in Zya_1 and (p% — 1) |
(p" —1), 50 2 | a. In particular,i € Ly = ((p* —1)/(p? — 1)) > To(p') =Z,zr_;. If
i = (p' + 1)k for somek € Ly, thenj = p'i = p' (p' + Dk = (p? + pHk = (p' + Dk =i
and(i, j) ¢ Ra(p®), which is impossible. Thus¢ (p’ + 1Z,x_q andi € Ti(pH, (i, j} =
{j, i} =1{i, p'i} € ?T1(p"). Conversely, suppose, p'i} € °T1(p') and 2 | a. Identify L,
with To(p"). Thenx = {(i, j), (j, i)} € Y2(p?), wherej = p'i. It follows that

a 2T1(pt) if 2¢ | a,
e(p )_{@ it 21 1
as H-sets.

(iv) SupposelU (p®) = 2Ra(p%), and x = {(i, ), (,i — j)} € U(p%). Thenx €
Cypo(H) ifand only if p'i =i andp’j = jor p'i =i andp'j =i — j in Ro(p*) =
Zg-1.

Let

Uu(%) Ha. . G.i =} eCupayH): pli=i, p'j=j} ife=1,
¢ = Co e .. .
Ha. . Gi— pYeCupayH): pli=i, p'j=i—j} ife=2
If x e Ur(p?),theni, j € L, ~7Z,_1 = Ro(p");andifi —2j =0in L, theni —2j =0
in Ro(p?), which is impossible, so thdt, j) € R3(p’), and hence € U (p’). Conversely,
supposex = {(i, j), (i,i — j)} € U(p"). Identify L, with Ro(p’). Thenx € U1(p?). It
follows that

Ui(p®) = U(p')

as H-sets.

Supposex = {(i, j), (i,i — j)} € U2(p?). Thenp'i =i andp'j =i — j = p'i — j,
sothati € Ly, p'(i — j) = j, p?j=p'(i — j)=j andj € Ly ~ To(p') = Z,z_3. In
particular,(p? —1) | (p®—1) and so 2| a. If j = (p' + 1)k for somek € Ly, theni — j =
plj=(p%+ pHk= A+ pHk=j and(i, j) ¢ R3(p®), which is impossible. Thug ¢
(P'+DZ,a_qandj € Ti(p"). Thus{j, p'j} = {j,i — j} € 2Ty(p"). Conversely, suppose
{j. p'j} € 2T1(p") and 2 | a. Identify Ly, with To(p?). Thenx = {(p' + 1), j). (p' +
1)/, p'j)} € Ua(p*). It follows that

2T1(pt) if 21 | a,
) if 2t fa

2(p) = |

as H-sets.
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(v) Let (E(p®), F(p")) € {PR1(p"), 2S1(p®)), PR} (p"), 2S5 (p*))}, and letX (p®) =
E(p*)UF(pY).If x ={k, —k} € X (p*), thenx € Cxpay(H) ifand only if (p' — 1)k =0
or (p' + 1k =0. Let

X+ (p?) = {{k, =k} € Cx(poy(H): (p' £ 1)k =0},

so thatX  (p?) N X _(p*) =¢. Suppose: = {k, —k} € X_(p“),sothatk € L; >~ Z_1 =
Ro(p"). Thus, if E(p®) = 2R1(p*), thenk € R1(p"), and if E(p) = 2R} (p“), thenk €
Ri(p"). Sox € E(p"). Conversely, ifx € E(p'), thenx € X_(p®) after identifying L,
with Ro(p?). It follows that

X-(p*) = E(p')

as H-sets.

Supposex = {k, —k} € X+ (p?). Then(p' + 1) | (p* — D or (p' +1) | (p* + 1) ac-
cording as 2| a or 2 {a. In the former case, lef; = ((p* — 1)/(p' + 1) = Zpi41,
and in the later case lef be the subgroug(p® + 1)/(p' + 1)) < Zy41. Thenk € J;
and J; ~ So(p') = Z 41 as H-sets. Thus, ifF (p9) = 281(p*), thenk € S1(p'), and
if F(p9) =2S}(p%), thenk € S;(p"). Sox € F(p'). Conversely, ifx € F(p'), then
x € X4 (p%) after identifyingJ; with Sp(p’). It follows that

X+ (p*)=F(p")
asH-sets. O

Lemma 3.2. Suppose #2or 3, ¢g = p%, andt | a. Let

X(p*) =*T3(p") U*T3(p") UV (p®) WS (p*) U P2 Re(p") U 2S5 (p°)
(disjoint union.

Supposéa) acts onX (p) by x* = px and H = («'). Then

Cx(poy(H) = X (p")
as H -sets, wherex acts similarly onX (p).

Proof. LetF, be a finite field withy elements andf, an algebraic closure d,. Let T
the maximal torus oG = G2(F,) andW = Nz (T)/T the Weyl group ofG.

Let x = x(x) be an irreducible character 6f;(¢) labeled by the parameter{4]. Then
x (x)* = x(px) (which will be verified later). In addition, lets, 1) be the semisimple
and unipotent labels of (x). Thenx € X (p?) if and only if (s, u) = (s, 1) with s regular
(cf. [11, p. 359]), so thaCz(s) = T. Thusx® = y if and only if (s)"" = (s)g, hamely,
s¢ = s for somew € W, where(s)g is the conjugacy class aff containings. Thus
x¥ = x if and only if s € CT(oz’w_l), namely,s is a regular element aofi»(p’), since
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C7(a'w™1) is @ maximal torus of5,(p"). But a regular element of Go(p") labels an
irreducible charactey = v 1 of G2(p") such that its parameter(see [4]) lies inX (p').
It follows that

Cx(poy(H) = X(p")
asH-sets. O

Remark. Lemma 3.2 can also be proved by a direct calculation as that of Lemma 3.1, and
part of Lemma 3.1 can be proved using a similar idea to that of Lemma 3.2.

4. Proof for Go(p?)

In this section, we prove Dade’s invariant conjecture @o= G2(p®) in the defining
characteristic whep # 2 or 3.

Supposep # 2,3, O = Out(G) = {(«), wherex is a field automorphism of; with or-
dera. We may assume thatstabilizesW, P and Q. According to the Borel-Tits theorem
[5], the normalizers of radicagh-subgroups are parabolic subgroups. The ragieahains
of G (up to G-conjugacy) are given in Table 1.

SinceC(5): 1< 0,(Q) < 0,(W) andC(6): 1 < 0,(W) have the same normalizers
NG (C(5)) = Ng(C(6)) andN4 (C(5)) = NA(C(6)), it follows that

k(Ng(C(5)), Bo,d,u) =k(Ng(C(6)), Bo,d, u).

Thus, the contribution of (5) andC (6) in the alternating sum of Dade’s invariant conjec-
ture is zero. Dade’s invariant conjecture @ris equivalent to

K(G, Bo,d,u) +k(W, Bo,d,u) =K(P, Bo,d,u) +K(Q, Bo,d, u) 1)
foranyu | a.

Theorem 4.1. Let B be ap-block of G = G2(p®) with a positive defect. TheB satisfies
the invariant conjecture of Dade.

Table 1

Radicalp-chains ofG

Cc NG (C) Na(C)

c@) 1 G A

C(2 1< 0p(P) P P x (a)
c@3) 1< 0p(P) < 0p(W) w W x (o)
(o) 1<0p(0) o 0 % (&)
c(5) 1< 0p(0) < Op(W) w W x (a)
C(6) 1< 0p(W) w W x (a)
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Proof. Since D(B) # 1, it follows thatB = By = Bo(G) is the principal block. Let €
{G, W, P, Q}.By[4,6], k(L, By, d) =0whend ¢ {3a, 4a, 5a, 6a}.

The action of O on the conjugacyL-classes induces an action ¢f on the set
Irr(L, Bo, d), and then an action on the parameter sets. Using the values of characters in
Irr(L, Bo, d) acting on the classes listed in the last column of Tables 2-5, we can describe
the action ofO on the parameter sets.

() If d = 3a, then IrM(G, Bo, 3a) = {X31}, Irr(P, Bg, 3a) = {0g}, Irr(W, By, 3a) =
Irr(Q, Bo, 3a) = . Thus (1) holds.

(i) Supposed = 4a, so that IrfL, Bg,d) is given by Table 3. If6 € {X»1 €
Irr(G), 6;(k) € lrr(W): i =7, 8}, then by the degrees or valuestobn the classes given
in the last column of Table 3, it follows that = 0. Similarly, if 6 € {6; € Irr(P), 612 €
Irr(Q): 9<i <12}, then by the degrees or values®bn the classes given in the last
column of Table 3, it follows thag* = 6.

Let A(p%) = Ro(p®) and B(p?) = 2R1(p®) U2S1(p®) U {1} with 1¢ = 1. Here, 1 de-
notes the parameter 6f < Irr(P). Then

|A(p")|=[B(p")|=p" - 1.

Let U(p%) = A(p*) U B(p?). Then using the values of characters on the classes listed in
the last column of Table 3, we know that the actioreain U (p) is given byx* = px for

Table 2
The characters of defect3
Group Character Degree Parameter Number Class
G2(p®)  Xa; @ +e) 1
P b8 7%qg -1 1
Table 3
The characters of defect4
Group Character Degree Parameter  Number Class
Ga(p®)  X21 a*q*+ 4>+ 1) 1
w x7(k) 7’ -1 Ro q-1 C11()
07 (k) q%(q — ?/2 2 B3y
0g(k) q%(q — 1?/2 2 B3a
P x7(k) 7*(¢>-1) 2Ry (@-3/2 C110)
x8(k) q%(qg - 1)? 25 (@—1/2  D1(i)
b7 ") 1
b9 q%(q — ?/2 1 Ae1
010 a%(q — 1?/2 1 Ap1
011 7%(q®>—1)/2 1 Ag1
f12 a%@®-1/2 1 Ae1
0 f12 q%(q¢ -1 1
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anyx € U(pY)\{1}. If t |a andH = (') < O, then by Lemma 3.1C 4(,«)(H) =~ A(p")
andCp(pay(H) =~ B(p'), so that

A(p®) = B(p") ©)

as 0-sets. It follows that (1) holds.
(iif) Supposed = 5a, so that Ir(L, Bo,d) is given by Table 4. Sinc#z(k, ) =
InvaV(Og(k, £)) for each pair(k, ¢), it follows that

02k, ©)% = IndS (62(k, £)%),

and{pba(k, £)} >~ {wba(k, £)} as O-sets.
Similarly, sincefz(x) = Invav(e(x)) for eachx € K* ande = 1, it follows that

63(x)* = Ind (6(x)%),

and{p63(x)} >~ {wb(x)} asO-sets.
Moreover, sincé(x) = Indg, (6(x)) for eachx € K ande = —1, it follows that

0a(x)® = IndZ (6(x)%),

and{p6s(x)} ~ {wb(x)} asO-sets.
Let

@G = {X23, X24, X13, X14, X17, X18, X19, X109} C I'1(G),
@p = {62(k), 63(k), 04, 65, O(k) } C Irr(P),
o = {05(k), 0s(k). 67, 08, 09, O10} S 1T (Q).

If 6 € @5 U{0; (k) € Irr(W): 3<i < 6}, then by the degrees or valuegiadin the classes
given in the last column of Table 4, it follows thétt = 6. Similarly, if 0 € ®p U @, then
by the degrees or values @fon the classes given in the last column of Table 4, it follows
thato® =0.

Let C(p®) = 2R} (p®) U2S;(p®) U {1} U {2} with 1 = 1 and Z = 2. Here, 12 denote
the parameters of 15, X16 € Irr(G). Using the values of characters on the classes listed in
the last column of Table 4, we know that the actiomeadn C (p?) is given byx® = px for
anyx € C(p")\ ({(1}u{2}).If r |a andH = (a') < O, then by Lemma 3.1C ¢ (pa) (H) =~
C(p"). Since|C(p?)| = p — 1, it follows that

C(p*) = A(p") (3)
as 0-sets, whered (p?) is defined as in the proof of (ii). Similarly, (ii) (whe®(p®) with

1 as parameter of33 € Irr (G)) still holds whend = 5a. It follows by (2) and (3) that (1)
holds.
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Table 4

The characters of defect:5

Group Character Degree Parameter Number Class

Ga(p%)  Xi3 q@*+q¢%>+1)/3 1 Ay
X14 q(@*+4¢%>+1)/3 1 Ay
X15 a@+D%G%—q+1)/2 1
X16 a@+D%@*+q+1)/6 1
X17 a(q =122 +q+1)/2 1
X18 a(q—D%@%>—q+1)/6 1
X19 q(g®>-1?/3 1 By
X19 q(@®-1?/3 1 Bo
X23 a@*+4%>+1) 1 Ap
X24 q@*+q%+1 1 Azl
X33 qg+eg3+e 1
X1q4 q@+D@*+4¢%>+1) 2R} (g—4—-e)/2  Cpl)
X1 a@ +D@*+4%>+1) 2Ry (¢—3)/2 C12(0)
Xoq q(@ —D@*+4%>+1) 251 (¢-1/2 D12(i)
Xop a(@ —D@*+4¢%>+1) 253 (g—2+€)/2  Dyli)

w xa(k) qlg—=1) Ro g—1 Cs1(0)
xs(k) qq@ -1 Rg g-1 Cy1()
xe(k) q@—-1 Ro g—1 Co1(i)
f(x)(e=1) q(q —1)? K* q-1
6(x)(e =—1) q(qg — 1? K q
ok, (e =+1) (g —D?/3 9
03(k) q(q —1?/2 2 Bos
0a(k) q(g —1?/2 2 Bos
05(k) q(qg —1?/2 2 B11
06(k) q(q —1?/2 2 B11

P x3(k) q Ro q-1 C31(0)
x6(k) FICERN) Ro q-1 C31(i)
02(k) a(q - (g% -1)/2 2 B11
03(k) q(q — (g% -1)/6 2 By
04 q(q-D(q?>-1)/3 1 Bo(1), B(2)
05 a(q—D(q%>-1/3 1 Ba(1), B2(2)
06 (k) q(q —D(q?-1)/3 2 Bo(1). B2(2)

0 x3(k) q Ro g-1 C31(i)
x6(k) q@® -1 2Ry (¢—3)/2 C21(0)
x7(k) q@® -1 Ro q-1 C11(i)
xs(k) q(qg —1? 25, (¢—1)/2 D11()
ok, (e =+1)  qlg—D(g>-1)/3 9
03(x)(e = +1) q(g—D(@*> -1 K* q—1
f4(x)(e = —1) q(g - D(@* -1 K q
05(k) a(q - (g% -1)/2 2 B11
06(k) qg —D@*>-1)/2 2 B11
o7 qlg —1?/2 1 Aax
03 q(q — 1?2 1 A1
69 q(g?-1)/2 1 Ag1
610 q@®-1)/2 1 Aax
011 qq@—-1 1
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Table 5

The characters of defect:6

Group Character Degree Parameter Number Class

Ga(p?) X11 1 1
X32 q3 +€ 1
X22 @ +q?+1 1
X, @+D@*+q2+D 2R: G—4—e)/2 E1()
Xy @-D@*+4>+D 2% @—-2+e)/2 Eo(i)
Xy, @+D@*+4¢%+D 2Ry q-3)/2 Ea(i)
Xy, @-D@*+q2+1 25, q-1/2 E1(i)
X1 @+D%@*+4°+1  12Rg (q%—8q +17+26)/12  C11()
X2 @-D2%q*+4%+1 125 (g% —4q +5—2¢)/12 D11(i)
Xa ¢%-1 413 (@ -1%/4 Ca2(i)
X -1 413 (¢ —1?/4 C12(0)
X3 @®-D%q*>—q+1  Ovf @ +q-1—€)/6 E3(i)
Xs @ -D%q?+q+1  Owi @%>+q-1+e)/6 E4(i)

114 x1(k. 0) 1 Rg x Rg (¢ —D? Ca1(i)
x2(k) qg—1 Ro g—1 Ce1(0)
x3(k) qg—1 Ro g-1 C31(i)
01 (¢ —D? 1

P x1(k) 1 Ro g-1 C31(0)
x2(k, £) g+1 2R3 (@—Dg—2)/2 C31()
xa(k) q-1 n q(q —1)/2 0]
x5(k) g?>-1 Ro q-1 C21(0)
01 @-D@*>-1 1

0 x1(k) 1 Ro q-1 C31(i)
x2(k, £) g+1 2R, (@-D(g—-2)/2 C31(0)
xa(k) g-1 ’n q(q—1)/2 Ca1(0)
x5(k) ¢?>-1 Ro q-1 C31(0)
01 @-D@?-1 1

(iv) Supposed = 6a, so that Ir(L, B, d) is given by Table 5. LeX (p?) be given as
in Lemma 3.2 andD(p?) = 2R2(p) U 2T1(p®) U {1} with 1¢ = 1. Here, 1 denotes the
parameter ob € Irr(Q). Then

ID(p")| = X(p°)] = (r* — D> +1.

Using the values of characters on the classes listed in the last column of Table 5, we
know that the action of on D(p“%) U X (p?) is given byx® = px for anyx € (D(p%) U
X(p")H\{1}.If t |a andH = (&') < O, then by Lemmas 3.1 and 32p ) (H) =~ D(p")

andCx ,«)(H) ~ X (p") so that

asO-sets.
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Let E(p*) = *R3(p*) U2T1(p*) and F (p*) = Ro(p) x Ro(p®). Then

E(")| = |F ()] = (" = 1)". @)

Using the values of characters on the classes listed in the last column of Table 5, we know
that the action oé on E(p®) U F(p?) is given byx® = px for anyx € (E(p%) U F(p%)).

If r|a andH = (&') < O, then by Lemmas 3.1Cg(,«)(H) ~ E(p") and Cgpay(H) =~

F(p") so that

E(p®) = F(p")

asO-sets. Similarly, (2) (with 1 as the parameter)of; € Irr(G)) and (3) (with 12 as the
parameters oK 22, X3z € Irr (G)) still hold. It follows by (2)—(4) that (1) holds. O
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