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Abstract. Regular and irregular pretopologies are studied. In particular,
for every ordinal there exists a topology such that the series of its partial

(pretopological) regularizations has length of that ordinal. Regularity and
topologicity of standard pretopologies on cascades can be characterized in

terms of their states, so that their study for such spaces reduces to that of

a combinatorics of states. For example, if an iterated partial regularization
rkπ is topological for k > 0 then rπ is a regular topology. Irregularity of

pretopologies of countable character can be characterized in terms of sequential

cascades with standard irregular pretopologies.
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1. Introduction and some preliminaries

In convergence theory there are several generalizations of the topological notion
of regularity. In fact, the two regularity concepts, of Fischer [6] and of Grimeisen
[7][8], coincide for pseudotopological spaces.1 By a convergence we understand a
relation x ∈ limF , between filters F and points x, such that F ⊂ G implies
limF ⊂ limG, and for which the principal ultrafilter of x converges to x for every
point x. If ξ and ζ are convergences on the same underlying set, then ζ is finer
than ξ (ξ ≤ ζ) whenever limζ F ⊂ limξ F for every filter F . A map f between
pretopological spaces is continuous if f(limF) ⊂ lim f(F) for every filter F , where
f(F) stands for the filter generated by {f(F ) : F ∈ F}. A convergence is Hausdorff
if limF is at most a singleton.
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1A convergence is a pseudotopology if limF =

T
U∈βF limU , where βF stands for the set of

ultrafilters that are finer than F .
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2 SZYMON DOLECKI AND DAVID GAULD

The adherence of a filterH with respect to a convergence ξ is defined by adhξ H =⋃
F#H limξ F where F#H means that F meshes with G, that is, F ∩ H 6= ∅ for

every F ∈ F and each H ∈ H. In particular, adhξ H denotes the adherence of the
principal filter of H. A convergence is a pretopology if limF ⊃

⋂
H#F adh H.

If F is a filter on the underlying set |ξ| of a convergence ξ, then the symbol
adh\

ξ F denotes the filter generated by {adhξ F : F ∈ F}. A convergence ξ is
regular (in the sense of Fischer) if

(1.1) limξ F ⊂ limξ(adh\
ξ F)

for every filter F .2 In this sense a regular convergence need not be Hausdorff.
A set A is closed with respect to a convergence ξ if adhξ A ⊂ A. The closure

clξ A of A is the least ξ-closed set that includes A. A convergence is a topology if
limF ⊃

⋂
H#F cl H. If F is a filter on the underlying set of a convergence ξ, then

the symbol cl\ξ F denotes the filter generated by {clξ F : F ∈ F}. A convergence ξ

is said to be topologically regular whenever limξ F ⊂ limξ cl\ξ F for every filter F .
In this paper we observe (Proposition 3.7) a peculiar but simple fact concern-

ing regular pretopologies, which seems to have passed unnoticed so far. A regular
pretopology is topologically regular. This property does not hold for general con-
vergences (Example 3.8).

The classes of pretopologies, topologies and of regular convergences are con-
cretely reflective subcategories of the category of convergences. The corresponding
reflectors are denoted by P, T and R respectively. In other words, for every con-
vergence ξ there exists, respectively, the finest pretopology, topology and a regular
convergence among those that are coarser than ξ. They are denoted by Pξ, Tξ and
Rξ and called the pretopologization, topologization and regularization of ξ.

We notice that the topologization of a Hausdorff regular pretopology on a count-
able set is normal, hence regular (Theorem 3.9). This fact slightly improves [11,
Theorem 2.4] by Nyikos and Vaughan who attribute it to Foged, although these
authors do not mention pretopologies, but formulate the result in terms of weak
bases of topologies.

If ξ is a convergence then we define its partial regularization rξ as follows: x ∈
limrξ F if there exists a filter G such that x ∈ limξ G and F ≥ adh\

ξ G. It is clear
that ξ ≥ rξ and that ξ is regular if and only if ξ ≤ rξ. The partial regularization
can be iterated: for each ordinal β > 1, set

rβξ = r(
∧

α<β

rαξ),

where
∧

stands for the infimum in the complete lattice of convergences on a fixed
(underlying) set. Sometime it is useful to define r<βξ =

∧
α<β rαξ for limit β. Of

course, for every convergence ξ there is a least ordinal β (called the irregularity of
ξ) such that rβ+1ξ = rβξ and thus rβξ = Rξ. We show that for every ordinal β,
there exists a pretopology ξ whose irregularity is β. Kent and Richardson [9][10]
introduced another functor of partial regularization, which in our terminology is
equal to rω. They proved that for every ordinal β there exists a pretopology ξ such

2In case where ξ is a topology, that is, x ∈ limξ F whenever F is finer the neighborhood filter

of x, (1.1) means that every neighborhood of x includes a closed neighborhood of x.
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that β is the least ordinal for which (rω)βξ = Rξ. Due to the adopted definitions,
our result is more precise. On the other hand, our construction is much simpler.

If every filter converging to x in rξ converges to x also in ξ then x is regular
with respect to ξ. More precisely, the irregularity spectrum of an element x of a
convergence space ξ is the set of ordinals β such that for each α < β there is a filter
that converges to x in rβξ but not in rβξ . An irregularity spectrum need not be
an interval of Ord; in particular, the irregularity spectrum of a regular point need
not be empty.

We observe that the partial regularization of a pretopology is a pretopology, but
the partial regularization of a topology is not necessarily a topology. Nevertheless
infinite iterations of the partial regularization of a pretopology need not a pretopol-
ogy, because an infimum (in the lattice of convergences on a fixed set) of infinitely
many pretopologies need not be a pretopology. As the set of pretopologies (on a
fixed set) is a complete lattice (actually the pretopological infimum

∧P is equal to
P
∧

), we consider sometimes iterated pretopological partial regularizations.
An important special class is that of convergences of countable character. The

partial regularization of a convergence of countable character is of countable char-
acter. Moreover, an element x is irregular for a pretopology of countable character
if and only if there exists a bisequence {xn,k : n, k < ω} and a sequence (xn)n

such that xn ∈ lim(xn,k)k for each n, x /∈ adh(xn)n and the filter generated by
{xn,k : n ≤ m, k < ω}m<ω converges to x. This characterization led us to a study
of regularity of special pretopologies of countable character on some sequential
trees. It turned out that, at least for finite rank, such a study can be reduced to
a combinatorics of finite subintervals of ω. This makes it easier to test general
hypotheses or to construct counter-examples.

We prove that if n is an irregularity of an element x of a pretopology of countable
character, then there exists a homeomorphically embedded sequential cascade T of
rank n+1 with a maximally irregular pretopology of countable character such that
∅T = x. The converse is not true but for n = 1.

2. Partial regularizations

In Section 1 we have defined the partial regularization rξ of ξ. Namely, x ∈
limrξ F if there exists a filter G such that x ∈ limξ G and F ≥ adh\

ξ G. The
irregularity ρ(ξ) of a convergence ξ is the least ordinal β such that rβξ = rβ+1ξ.
Thus Rξ = rρ(ξ)ξ.

An element x is regular with respect to a convergence ξ if x ∈ limrξ F implies
that x ∈ limξ F ; otherwise it is irregular. An ordinal β is an irregularity of
x with respect to ξ whenever for every α < β there exists a filter F such that
x ∈ limrβξ F and x /∈ limrαξ F . If such a β does not exist, then we say that x is
intrinsically regular. The set of irregularities of x (with respect to ξ) is called the
irregularity spectrum of x and is denoted by spectξ(x), and ρξ(x) = sup spectξ(x)
is the irregularity bound of x. Therefore an element is regular if and only if 1 does
not belong to its spectrum. Of course, ρ(ξ) = supx∈|ξ| ρξ(x) where |ξ| stands for
the underlying set of ξ.

Example 2.1. Let T = {∅} ∪ {xn : n < ω} ∪ {xn,k : n, k < ω} be an (extended)
bisequence equipped with the following topology ξ: the elements xn,k (of level 2)
are isolated, the free part of the neighborhood filter Nξ(xn) is the cofinite filter of
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{xn,k : k < ω} for every n < ω, and the free part of the neighborhood filter Nξ(∅)
is Nξ(H), the contour of Nξ along the cofinite filter H of {xn : n < ω}. We
notice that adh\

ξ N (H) = {∅}↑ ∧ H ∧ Nξ(H), hence ξ is not regular, because H
is not finer than Nξ(H) (actually, H does not mesh with Nξ(H)). Notice that
Nrξ(∅) = adh\

ξ Nξ(H),Nrξ(xn) = Nξ(xn) and xn,k is isolated for rξ for each
natural n and k. We notice that rξ is a regular topology, so that ρ(ξ) = 1.

We notice that in Example 2.1 the filters convergent to xn,k and to xn are the
same for ξ and for rξ, while there are more filters convergent to ∅ in rξ than in
ξ. Therefore the elements of levels 1 and 2 in Example 2.1 are intrinsically regular,
while the irregularity spectrum of ∅ is {1}.

If ξ is a convergence on a set Y and X ⊂ Y then ξ|X stands for the restriction
of ξ to X. We notice that

r(ξ|X) ≥ (rξ)|X ,

hence ρ(ξ) ≤ ρ(ξ|X). Indeed, if x ∈ limr(ξ|X) F then there is a filter G containing
X such that x ∈ limξ G and adh\

ξ|X G ≤ F . As adh\
ξ|X G = adh\

ξ G ∨ X, we infer
that X ∈ F and x ∈ limrξ F , hence x ∈ lim(rξ)|X F .

The converse inequality does not hold in general; it does if X is an open subset
of Y . For instance, take the pretopology ξ of Example 2.1 and let X = {0} ∪ {xn :
n < ω}. Then ξ|X is discrete, hence regular so that r(ξ|X) = ξ|X , while rξ is the
natural topology of T , thus (rξ)|X is the natural topology of {0} ∪ {xn : n < ω},
which is strictly coarser than the discrete topology ξ|X .

If W(y) is a family of subsets of X for every y ∈ Y , and if A is a family of subsets
of Y , then the contour of W along A is defined by

(2.1)
∫
A
W = W(A) =

⋃
A∈A

⋂
y∈A

W(y).

The infimum Vξ(x) of all filters, which converge to x, is called the vicinity filter
of x with respect to ξ. A convergence ξ is a pretopology if and only if x ∈ limξ Vξ(x)
for every x ∈ |ξ|, where |ξ| stands for the underlying set of ξ. It is straightforward
that

(2.2) A#Vξ(B) ⇐⇒ (adh\
ξ A)#B

for each families of sets A and B. It is known [9] that a pseudotopology ξ is regular
if and only if

(2.3) adhξ Vξ(H) ⊂ adhξ H
for every filter H.

By definition, A t B is defined and equal to A ∪ B whenever A ∩ B = ∅;
similarly,

⊔
A∈AA is defined and equal to

⋃
A∈AA whenever A0∩A1 = ∅ for every

two distinct elements A0, A1 of A.

Proposition 2.2. For every ordinal β, there exists a Hausdorff pretopology of
irregularity β (of cardinality |β| ∨ ℵ0).

Proof. Actually we will show that this irregularity is attained at an element, for
which it is strong. The irregularity of each regular pretopology is 0. Example 2.1
describes a Hausdorff topology of irregularity 1 and of cardinality ℵ0. Suppose that
β > 1 and that for each α < β, there exists a set Xα (of cardinality |α| ∨ ℵ0), a
Hausdorff pretopology πα on Xα, an element xα of Xα, and a free filter Fα on Xα
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such that xα ∈ limrαπα Fα \ limrγπα Fα for each γ < α. If β is limit, then consider
the simple sum

⊕
α<β πα on

⊔
α<β Xα and let F be the image on {xα : α < β} of

the coarsest filter on β = {α : α < β} that converges to β in the natural topology.
Define a pretopology π on

⊔
α<β Xα t {∅} (which is of cardinality |β| ∨ ℵ0) of by

setting {∅} = limπ

∫
F (F α)α<β .

This is a Hausdorff pretopology of cardinality |β|, and ∅ /∈ adhrγπ F for each
γ < β but ∅ ∈ limrβπ F , because adh\

rβπ

∫
F (F α)α<β ≤ F . If β is isolated, then

mimic the construction above, on replacing {πα : α < β} by countable infinite
simple sum of copies of β − 1 , and F by the cofinite filter of a countable infinite
set of copies of xβ−1.

Let us observe that if an irregularity β of an element x is isolated, then there is
a filter F such that x ∈ limrβξ F and x /∈ limrαξ F for all α < β. This inversion
of quantifiers leads to a slightly stronger property in case of limit ordinals; we can
call such an irregularity strong. The construction in the proof of Proposition 2.2
shows the existence of pretopologies of arbitrary irregularity attained at point as
strong irregularity. Example 2.3 illustrates a case of irregularity that is not strong.
The construction in the proof of Proposition 2.2 uses elements the irregularity of
which is strong. Here is an example of an element whose irregularity is ω0 and is
not strong.

Example 2.3. Let πn be a Hausdorff pretopology on Xn of cardinality ℵ0 of irregu-
larity n attained at xn. Let Fn be such a filter that xn ∈ limrnπn

Fn\ limrn−1πn
Fn.

Take the simple sum
⊕

n<ω πn on
⊔

n<ω Xn and take the pretopological quotient π
by identifying all xn in ∅. Then ∅ ∈ limrnπ Fk exactly for k ≤ n, rωπ = r<ωπ, and
∅ ∈ limrωπ Fn\ limrn−1πn

Fn for every n < ω, while there is no filter which con-
verges to ∅ in rωπ but does not converge in rnπ for every n < ω, that is, does not
converge in r<ωπ. If we pretopologize rωπ then we get a regular pretopology, which
vicinity filter at ∅ is equal to

∧
n<ω Fn ∧ {∅} where {∅} stands for the principal

ultrafilter of ∅.

3. Regularity for pretopologies

We shall concentrate here on regularity in the case of pretopologies. This level of
generality, on one hand, enables one to notice several interesting phenomena (like
the propagation of irregularities) that are not visible in the realm of topologies, and
on the other to avoid certain complexity, which can be qualified as technical, and
which is not essential for the phenomena mentioned above.

Proposition 3.1. If H is a filter, then

(3.1) adhrξ H = adhξ Vξ(H).

Proof. By definition, x ∈ adhrξ H if there exists a filter F ≥ H such that x ∈
limrξ F , hence there is a filter G such that x ∈ limξ G and adh\

ξ G ≤ F , thus
adh\

ξ G meshes with H, equivalently G meshes with Vξ(H), which means that x ∈
adhξ Vξ(H). Conversely, if x ∈ adhξ(Vξ(H)) then there is a filter G such that
G#Vξ(H) and x ∈ limξ G, hence adh\

ξ G meshes with H and adh\
ξ G converges to x

in rξ, so that x ∈ adhrξ H.
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Corollary 3.2. For every set H,

adhrξ H = adhξ(Vξ(H)).

Therefore,
adh\

rξ H ≈ {adhξ(Vξ(H)) : H ∈ H},
where A ≈ B means that A is finer than B (for every B ∈ B there is A ∈ A with
A ⊂ B) and B is finer than A. In the particular case above this signifies that the
family on the right-hand side is a base of the filter adh\

rξ H.

Proposition 3.3. The filter adh\
rξ H is finer than adh\

ξ V(H) for each family H.

Proof. Let A ∈ adh\
ξ Vξ(H); this means that there is H ∈ H and V ∈ Vξ(H)

such that adhξ V ⊂ A. In general, adhξ(Vξ(H)) ⊂ adhξ V for every V ∈ Vξ(H).
Therefore A ∈ adh\

rξ H.

In general, adh\
rξ H 6= adh\

ξ Vξ(H). Indeed, the irregular bisequence is an example
where the equality does not hold.

Example 3.4. Consider the pretopology of Example 2.1. For every H ∈ H we have
adhξ H = adhξ Vξ(H) =

⋂
V ∈V(H) adhξ V =

⋂
V ∈V(H) V = H, so that adh\

rξ H =

H. On the other hand, adh\
ξ Vξ(H) = {0}↑ ∧ H ∧ Vξ(H), which is strictly coarser

than H = adh\
rξ H.

Proposition 3.5. If ξ is a pretopology, then rξ is a pretopology, and

(3.2) Vrξ(x) = adh\
ξ Vξ(x).

Proof. If ξ is a pretopology, then by (3.1) for every set A,

adhrξ A =
⋂

V ∈Vξ(A)
adhξ V.

By definition, a set A meshes with Vrξ(x) if and only if x ∈ adhrξ A, so when
ξ is a pretopology, if and only if x ∈ adhξ V for every V ∈ Vξ(A), equiva-
lently if V ∈ Vξ(A) then Vξ(x)#V , that is, Vξ(A)#Vξ(x), which amounts to
A# adh\

ξ Vξ(x). Therefore (3.2) holds. Now if ξ is a pretopology x ∈ limrξ F
whenever F ≥ adh\

ξ Vξ(x), which proves that rξ is a pretopology.

Corollary 3.6. If ξ is a pretopology, then rnξ is a pretopology for every n.

Let Wξ(x) = adh\
ξ Vξ(x), and if Wn

ξ (x) is defined for n ≥ 1, let

Wn+1
ξ (x) = adh\

ξ Vξ(Wn
ξ (x)).

It is important to stress that Wn
ξ (x) is not (in general) an iterated contour of the

system of vicinities adh\
ξ Vξ. The following diagonal iteration of a pretopology is a

special case of diagonal product introduced in [3] by G. H. Greco and one of the
present authors. By definition, adhξ0 A = A and

adhξβ A = adhξ

(⋃
α<β

adhξα A
)

for β > 0. The adherence above defines a pretopology ξβ for every ordinal β. For
every pretopology ξ there is a least ordinal β such that ξβ = Tξ; this is the least
ordinal for which adhξβ A = adhξβ+1 A (equivalently, adhξβ A = clξ A) for every set
A.
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Proposition 3.7. Each regular pretopology is topologically regular.

Proof. Let ξ be a regular pretopology, that is, Vξ(x) ⊂ adh\
ξ Vξ(x). By applying,

adh\
ξ to this inclusion, we get adh\

ξ Vξ(x) ⊂ adh\
ξ2 Vξ(x) hence Vξ(x) ⊂ adh\

ξ2 Vξ(x).

Therefore Vξ(x) ⊂ adh\
ξn Vξ(x) for every n < ω and thus Vξ(x) ⊂ adh\

ξβ Vξ(x) for

every ordinal β, so that Vξ(x) ⊂ cl\ξ Vξ(x).

The property above does not hold for general convergences.3 For each n, m < ω
let An,m be a countably infinite set such that An,m+1 is a partition of An,m. Let
Am =

⊔
n<ω An,m and A =

⊔
m<ω Am will be called a sink (of countable character).

The map πm
m+1 : Am → Am+1 is the quotient defined by Am+1 on Am. The natural

convergence of a sink is defined by the fact that for each n, m and p ∈ An,m+1 the
cofinite filterN (p) of (πm

m+1)
−(p) converges to p. Of course, the natural convergence

of a sink is sequential. Let Fm be the filter generated by {
⋃

n≥l An,m : l < ω}.

Example 3.8. Let A =
⊔

n,m<ω An,m be a sink endowed with its natural conver-
gence. We extend the convergence of A to X = {∞}∪A so that

∧
m≤k Fm converges

to ∞ for every k < ω. This is a Hausdorff pseudotopology of countable character. It
is regular, because adh\ Fm = Fm+1 ∧Fm, hence adh\

(∧
m≤k Fm

)
≥
∧

m≤k+1 Fm,

and adh\N (p) = N (p) for each n, m and p ∈ An,m+1. But it is not topologically
regular, because cl\ F0 =

∧
m<ω Fk, and the latter filter does not converge to ∞.

Actually, much more can be said if the underlying set is countable. If a conver-
gence is a pretopology then it is Hausdorff if V(x0) does not mesh with V(x1) when
x0 6= x1. It is straightforward that each point of a Hausdorff pretopology is closed,
in other words, the pretopology is T1.

Theorem 3.9. The topologization of a Hausdorff regular pretopology on a countable
set is normal, hence regular.

Theorem 3.9 slightly improves [11, Theorem 2.4] by Nyikos and Vaughan who
attribute it to Foged. Actually the authors do not mention pretopologies, but talk
about weak bases of a topology. A weak base of a topology τ on X is a union
of filter bases B(x) where x ∈ X such that x ∈ B if B ∈ B(x), and O is open
whenever x ∈ O implies the existence of B ∈ B(x) such that B ⊂ O. If we define a
pretopology π by declaring B(x) to be a base of the vicinity filter Vπ(x), then it is
clear that τ = Tπ. In these terms, τ is weakly T2 means that π is Hausdorff, and
τ is weakly T3 means that π is topologically regular. Thus by virtue of Proposition
3.7, we could relax the original assumption of topological regularity of [11, Theorem
2.4].

4. Regularity of special pretopologies on cascades

We found it useful to study regularity problems first for some special pretopolo-
gies on trees, which are well-founded with respect to the inverse order. Such pre-
topologies are akin to the construction of Proposition 2.2.

It turns out that in case of finite rank, regularity and topologicity properties
of such pretopologies can be reduced to some combinatorial properties of finite
subintervals on ω. This enables one to test hypotheses in an easier way.

3Not even for pseudotopologies.
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Cascades are discussed in detail in [4] and [2]. A cascade is a tree T with a
single origin ∅T , every non-empty subset of which admits a maximal element, and
such that for each non-maximal t ∈ T the set T+(t) (of immediate successors
of t ) is infinite. A cascade is sequential if T+(t) is countable infinite for every
t ∈ T\max T . A subset S of a sequential cascade T is a subcascade if ∅T ∈ S, if for
every t ∈ S \max T , the set S+(t) is an infinite subset of T+(t), and if S is closed
downwards, that is, t ∈ S implies that {s ∈ S : s ≤ t} ⊂ S. It follows that S is a
cascade and max S ⊂ max T .

The rank rT (t) of an element t of T is 0 if t ∈ max T , and otherwise

rT (t) = sup{rT (s) + 1 : t < s};

hence, for every t ∈ T \max T ,

(4.1) rT (t) = sup{rT (s) + 1 : s ∈ T+(t)}.

The rank r(T ) of T is the rank of ∅T , that is, r(T ) = rT (∅T ). The coincidence of
the notation of the rank r with the partial regularizer r should not hopefully lead
to confusion. For every sequential cascade T there exists an order embedding h
of T in Σ = ω<ω ordered by inclusion, which is full, that is, such that h(∅) = ∅
and h restricted to T+(t) is a bijection onto Σ+(h(t)) for every t ∈ T\max T ;
therefore Σ+(h(t)) = {(t, n) : n < ω} induces on T+(t) the natural order of the
type ω. From now on we use the term sequential cascade for a sequential cascade
fully embedded in ω<ω. A sequential cascade is monotone if rT is non-decreasing
on T+(t) (with respect to the order induced from ω<ω by a fixed full embedding)
for every t ∈ T\max T .

The natural pretopology of a cascade T is the finest pretopology such that for
every non-maximal element t of T , the coarsest free filter that converges to t is the
cofinite filter of T+(t). Consequently the maximal elements of a cascade are isolated
for the natural pretopology. The natural topology is the topologization of the natural
pretopology. It is straightforward that the natural topology is Hausdorff.

The trace of the neighborhood filter of the natural topology of T on maxT is
denoted by

∫
T , the reason being that it is equal to the iterated contour defined

by the following well-founded induction: for t ∈ max T we take
∫

T ↑(t) to be
the principal ultrafilter of t; and if

∫
T ↑(s) is defined for each s ∈ T+(t), then∫

T ↑(t) =
∫

s∈T+(t)

∫
T ↑(s), that is, the contour of {

∫
T ↑(s) : s ∈ T+(t)} along the

cofinite filter of T+(t).
If T is a sequential cascade then a map f : maxT → X is called a multisequence

on X, and a map g : T → X, an extended multisequence. If X is a pretopological
space, then a multisequence f : maxT → X converges to x∞ whenever there exists
a continuous map f̂ : T → X (with T equipped with the natural pretopology) such
that f̂ |max T = f and f̂(∅T ) = x∞.

If N (t) stands for the neighborhood filter of t for the natural topology of a
(monotone) sequential cascade, then denote by N (l)

(k)(t) the restriction of the neigh-
borhood filter of t , of level k, to the level T (l) of T . This notation is redundant,
but spares the necessity of repeating that lT (t) = k. The natural topology has the
following property: for k < l < m,

(4.2) N (m)
(k) (t) = N (m)

(l)

(
N (l)

(k)(t)
)

,
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where the formula denotes the contour of N (m)
(l) along N (l)

(k)(t) in the sense of (2.1).
By definition, the closure (from the level l to the level k) is defined by

t ∈ cl(l)(k) A ⇔ A ∈
(
N (l)

(k)(t)
)#

.

In other words, cl(l)(k) A = T (k) ∩ cl(A ∩ T (l)). Hence, If T is of finite rank, then we
can decompose the closure and the neighborhood filters, namely,

cl A =
⋃

k≤l≤r(T )

cl(l)(k) A,

N (t) =
∧

k≤l≤r(T )

N (l)
(k)(t).

Lemma 4.1. For the natural topology of a monotone cascade of finite rank,(
cl(m)

(l)

)\

N (m)
(k) (t) = N (l)

(k)(t)

for k < l < m.

Proof. If W ∈ N (l)
(k)(t) and if Vw ∈ N (m)

(l) (w) and Vw ∈ T ↑(w) for each w ∈ W , then

cl(m)
(l)

( ⋃
w∈W

Vw

)
= W.

In fact, by definition, x ∈ cl(m)
(l)

(⋃
w∈W Vw

)
whenever

⋃
w∈W Vw meshes with

N (m)
(l) (x), that is whenever there is w ∈ W such that Vw meshes with N (m)

(l) (x),

which means that x = w ∈ W . By (4.2) V ∈ N (m)
(k) (t) if and only if there exists

W ∈ N (l)
(k)(t) such that for every w ∈ W there is Vw ∈ N (m)

(l) (w) such that V ⊃⋃
w∈W Vw, and this can be done so that Vw ∈ T ↑(w).

Let V(t) stand for a vicinity filter at t ∈ T of a pretopology on a sequential
cascade T . If t is of level k and l > k, then V(l)

(k)(t) denotes the restriction of V(t)
to the level l of T . A pretopology on a sequential cascade is almost standard if for
every t ∈ T and for each k > lT (t) either V(k)

(lT (t))(t) = N (k)
(lT (t))(t) or V(k)

(lT (t))(t) is
degenerate. A pretopology on T is said to be standard if for every 0 ≤ k < l ≤ r(T ),
either V(l)

(k)(t) = N (l)
(k)(t) or V(l)

(k)(t) is degenerate for every t of level k.

Proposition 4.2. For each almost standard pretopology π on a sequential cascade
T of finite rank there exists a monotone sequential subcascade S of T such that the
restriction of π to S is standard.

Proof. The claim is obvious for cascades of rank 1. Let us proceed by induc-
tion on the rank. If the claim holds for the rank n and r(T ) = n + 1 then
n = supt∈T+(∅T ) rT (t), thus by inductive assumption, for every t ∈ T+(∅T ), there
is a monotone subcascade St of T ↑(t) such that the restriction of the pretopology
to T ↑(t) is standard. As there exist (up to homeomorphism) only finitely many
standard pretopologies on a monotone cascade finite rank, there exists a standard
pretopology ξ on a monotone cascade of rank n and infinitely many t ∈ T+(∅)
such the pretopology on St is homeomorphic to ξ. By setting S+(∅) to be the set
of such t, we define a required subcascade of T .
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Proposition 4.3. The irregularity of a standard pretopology on a (monotone) se-
quential cascade of rank n + 1 is at most n.

Proof. If r(T ) = 1, then the only standard pretopology π on T is such that the
elements of maxT are isolated and there is on maxT a least filter (which is free)
converging to ∅T . This defines a regular topology, hence the maximal irregularity
of standard pretopologies is 0. If r(T ) = n+1 > 1 then n = supt∈T+(∅T )(rT (t)+1),
and if π is a standard pretopology on T , then by inductive assumption rn−1πt is
regular for every t ∈ T+(∅T ). It follows that adh\

rn−1π F ∧ {∅T } ≤ adh\
rnπ F for

every filter F such that ∅T ∈ limπ F . Therefore the irregularity of π is at most
n.

Because in the proof of Proposition 2.2 in case of countable ordinals, we have used
standard pretopologies on sequential cascades, the upper bounds in Proposition 4.3
are actually attained.

5. States of standard pretopologies

We denote the interval {k, k + 1, . . . , l} of natural numbers by [k, l]. A state on
[0, n] is a collection of intervals [k, l] of [0, n] such that k < l. Two intervals [i, j]
and [k, l] are called consecutive if j = k. If i < k, we define

[i, l] ∼ [k, l] = [i, k].

Therefore there are 2
n(n+1)

2 states on [0, n]. A state S is regular if k < l < m
and [k, m], [l,m] ∈ S implies that [k, l] ∈ S. For a state T on [0, n], an element k
of [0, n] is regular (with respect to S) if [k,m], [l,m] ∈ T with k < l < m implies
that [k, l] ∈ T ; otherwise, we say that k is irregular. Of course, a state is regular
if and only if every point is regular with respect to it. The least regular state that
includes S is called the regularization of S and is denoted by RS.

A state is topological if [k, l], [l,m] ∈ S, then [k, m] ∈ S. For a given state T ,
a point k is topological if [k, l], l, m] ∈ T implies that [k, m] ∈ T . Sure enough, a
state is topological if and only if every point is topological with respect to it. If S
is a state, then T S denotes the topologization of S, that is, the least topological
state that includes S. It is straightforward that TS consists of all the finite unions
of consecutive intervals from S.

There is a one-to-one correspondence between standard pretopologies on a cas-
cade of rank n and states on [0, n], namely if V denotes the vicinity system of such
a pretopology, then the corresponding state S is defined by [k, l] ∈ S if and only if
V(l)

(k)(t) is non-degenerate (for all t of level k).

Proposition 5.1. A standard pretopology is topological (resp., regular) if and only
if its state is topological (resp., regular).

Proof. Consider a standard pretopology on T and the corresponding state S. This
pretopology is a topology if and only if V(t) ⊂ V(V(t)) for every t, where V(t)
stands for the vicinity filter. This condition holds if and only if V(m)

(l) (V(l)
(k)(t)) is non-

degenerate, provided that V(m)
(l) and V(l)

(k) are non-degenerate for each m > l > k,
which, by (4.2), amounts to the following condition on S: if [k, l], [l,m] ∈ S then
[k,m] ∈ S.



IRREGULARITY 11

Let S be regular. We assume that t ∈ limU , where U is a free ultrafilter, and
want to show that t ∈ lim adh\ U . If lT (t) = k, then there is k < m ≤ r(T ) such
that T (m) ∈ U , hence V(m)

(k) (t) ≤ U , which means that V(m)
(k) (t) is non-degenerate,

that is, [k, m] ∈ S. Because T ↑(t) ∈ V(t) and T ↑(t) is closed, also T ↑(t) ∈ adh\ V(t).
If now k < l < m is such that [l,m] ∈ S, then, by the regularity of S, also [k, l] ∈ S,
hence V(l)

(k)(t) is non-degenerate. Therefore t ∈ lim adh\ U because, by virtue of

Lemma 4.1,
(
adh(m)

(l)

)\

U ≥ V(l)
(k)(t) for every k < l < m.

Conversely, if a standard pretopology is regular, S is the corresponding state,
and [k, m], [l, m] ∈ S for k < l < m, then V(m)

(k) and V(m)
(l) are non-degenerate, hence(

adh(m)
(l)

)\

V(m)
(k) (t) = V(l)

(k)(t) is non-degenerate by the regularity of the pretopology,
hence [k, l] ∈ S, which proves the regularity of S.

6. Pretopological combinatorics

If S is a state, then the partial regularization rS of S is equal to the union of S
and all the intervals of the form [k, l] where [k, m], [l,m] ∈ S and k < l. A sequence
of non-empty states Sj ,Sj−1, . . . ,S1 is regularizing if Si−1 = rSi for each 1 < i ≤ j;
a regularizing sequence is complete if S1 is regular. A complete sequence on [0, n] is
maximal if its length is the maximum of the length of all the regularizing sequences.
A state is called maximally irregular if it is the initial state for a maximal complete
sequence of states on [0, n] . If 0 < m < n and S is a state on [0, n], then we define

S(m) = {I ∈ S : I ⊂ [0,m]},

the restriction of S to [0,m].

Proposition 6.1. The maximal length of a complete sequence on [0, n] is n.

Proof. There is one non-empty state on [0, 1], namely that consisting of one interval
[0, 1], and thus the length of the regularizing sequence that starts at {[0, 1]} is 1.
Suppose the claim true for the states on [0, n], and consider a state S on [0, n + 1].
If there is in S no interval ending in n + 1, then S is equivalent to a state on [1, n],
hence, by the inductive assumption, the maximal length of its sequence is n. If there
is in S only one interval ending with n + 1, then it will not participate in creating
new elements of rS, hence again S is equivalent to a state on [0, n]. If there are at
least two such intervals in S, then there will be no interval in rS ending with n+1,
hence rS is equivalent to a state on [0, n], thus by the inductive assumption, the
maximal length of a complete sequence starting with rS is n, hence that starting
with S is n + 1.

Proposition 6.2. If S is a maximally irregular state on [0, n], then

for each m ∈ [2, n] there is a unique k < m with [k, m] ∈ S\{[n− 1, n]},(6.1)

for each k ∈ [0, n− 1] there is a unique m > k such that [k, m] ∈ S.(6.2)

Proof. Use induction on n. For n = 1 the only maximal complete sequence on
[0, 1] consists of the regular state S = {[0, 1]}. If the claim holds for n and S is a
maximally irregular state on [0, n+1], then (rS)|n is a maximally irregular state on
[0, n], hence by inductive assumption, [n−1, n] ∈ rS and there is a unique k < n−1
such that [k, n] ∈ rS. Both [k, n] and [n − 1, n] cannot belong to S, because then
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[k, n−1] ∈ rS, contradicting the uniqueness in (6.2). If [k, n] /∈ S and [n−1, n] /∈ S,
then [k, n + 1], [n− 1, n + 1], [n, n + 1] ∈ S and thus [k, n− 1] ∈ rS in contradiction
with the uniqueness in (6.2 ). Therefore either [n− 1, n] ∈ S and [k, n] /∈ S, which
implies that [n, n + 1], [k, n + 1] ∈ S, or [k, n] ∈ S and [n− 1, n] /∈ S, which implies
that [n, n + 1], [n− 1, n + 1] ∈ S.

The proof will be complete if we show that if [i, j] ∈ rS and j < n − 1 (thus
i 6= k) then [i, j] ∈ S. If this were not the case then there would be l such that
[i, l], [j, l] ∈ S ⊂ rS, and, by the uniqueness in (6.2) applied to (rS)|n, l = n + 1,
that is, [i, n + 1], [j, n + 1] ∈ S. As [k, n + 1] ∈ S either [i, k] ∈ rS or [k, i] ∈ rS,
violating the uniqueness of the inductive assumption (6.2). Thus [i, j] ∈ S.

Therefore a maximally irregular state S on [0, n] has exactly n intervals: to every
k ∈ [0, n−1] there corresponds one interval [k, lk]. If n > 1 then the only doubleton
that must not belong to S is [0, 1], and the one that must belong is [n− 1, n].

Remark 6.3. The doubletons of a maximally irregular state determine the state.
The algorithm is as follows: let A be the set of doubletons of a maximally irregular
state S on [0, n]. As just observed, [n− 1, n] ∈ A, and there must be l < n− 1 such
that [l, n] ∈ A. Notice that l is the greatest among the integers less than n such that
[l − 1, l] /∈ S. The next interval of S is of the form [k, l], where k is the greatest
among the integers less than l such that [l− 1, l] /∈ S. And so on. . . In this way, all
the integers j from [0, n − 1] such that [j, j + 1] /∈ S, appear as the initial ends of
the remaining intervals of S.

The necessity expressed by Proposition 6.2 is also sufficient. A (partial) map
on an ordered space is said to be contractive (strictly contractive) if x ≥ f(x)
(respectively, x > f(x)) for every x.

Proposition 6.4. A state S on [0, n] is maximally irregular if and only if [n−1, n] ∈
S, and there exists a strictly contractive bijection f : [2, n] → [0, n − 2] such that
[f(k), k] ∈ S for every k ∈ [2, n].

Proof. The necessity follows from Proposition 6.2.
We show by induction that the conditions of the statement imply maximal irreg-

ularity. If n = 2, then S = {[0, 2], [1, 2]} is the (only) state fulfilling the conditions.
Here f : [2] → [0]. The state rS = {[0, 2], [0, 1], [1, 2]} is regular. Suppose that the
statement is true for the states on [0, k] for k ≤ n and let S be a state on [0, n + 1]
which fulfills the conditions. In particular, there are only two intervals with the
same end: [n, n + 1] and [f(n + 1), n + 1]. Therefore rS = S ∪ {[f(n + 1), n]},
hence the collection of the intervals of rS which do not end in n + 1 fulfills the
conditions of the proposition, hence is maximally irregular state on [0, n] by virtue
of the inductive assumption.

We have seen in Remark 6.3 that doubletons determine a maximally irregular
state. In terms of the function f of Proposition 6.4, with an auxiliary map g defined
by g(j) = f(j) + 1 this amounts to the following

Proposition 6.5. Each contractive bijection g : [2, n] → [1, n − 1] is determined
by the fixed points.

Let F ⊂ [1, n− 1]. Then F is a disjoint union of intervals

F =
⋃

1≤i≤j

[ki, li].
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By definition, l0 = 0 and kj+1 = n. We set g(m) = m−1 for li−1 +1 < m < ki and
for 1 ≤ i ≤ j +1 and g(li +1) = ki− 1 for every i. If m ∈ F then we set g(m) = m.
In this way we define a unique contractive bijection g such that fix g = F .

There are exactly 2n−1 maximally irregular states on [0, n]. This follows from
the following

Proposition 6.6. No state on [0, 1] is irregular. The only irregular state on [0, 2] is
{[0, 2], [1, 2]}. If S is a maximally irregular state on [0, n], then the two maximally
irregular states on [0, n + 1], the restriction to [0, n] of the regularization of which
is S are

S\{[n− 1, n]} ∪ {[n− 1, n + 1], [n, n + 1]},
S\{[k, n]} ∪ {[k, n + 1], [n, n + 1]},

where k is the unique element of [0, n− 1] for which [k, n] ∈ S.

Proposition 6.6 enables one to construct all the maximally irregular states. The
scheme below starts with the only irregular state on [0, 2].

[0, 2], [1, 2] →


[0, 3], [1, 2], [2, 3] →

{
[0, 4], [1, 2], [2, 3], [3, 4]
[0, 3], [1, 2], [2, 4], [3, 4]

[0, 2], [1, 3], [2, 3] →
{

[0, 2], [1, 4], [2, 3], [3, 4]
[0, 2], [1, 3], [2, 4], [3, 4]

We would need also an algorithm of obtaining maximally irregular states on [0, n]
from those on [1, n].

Proposition 6.7. For a maximally irregular state S on [1, n], there are two maxi-
mally irregular states S0,S1 on [0, n] the restrictions of which to [1, n] are equal to
S, namely we set S0 = S ∪ {[0, 2]}, and if [1, k] ∈ S then S1 = S ∪ {[0, k], [1, 2]}.

Proof. As S is a maximally irregular state S on [1, n], by Proposition 6.4 there
is a bijection f : [3, n] → [1, n − 2] such that [f(k), k] ∈ S for every k ∈ [3, n].
There are two ways of extending f to a bijection from [2, n] to [0, n − 2], that is,
f0(2) = 0 and f0(k) = f(k) for k ∈ [3, n], or when m is such that f(m) = 1 then
set f1(m) = 0, f1(2) = 1 and f1(k) = f(k) for all k ∈ [3, n] distinct from m, that
is, for which f(k) 6= 1.

As for pretopologies, we introduce a concept of irregularity spectrum and of
irregularity number of a point of [0, n] with respect to a state on [0, n]. If T is a state
on [0, n] then p is a spectrum component of k if k is an irregularity point of rp−1T .
If now we come back to the standard pretopologies on cascades corresponding to
states, we realize the origin of a maximally irregular cascade need not be irregular.
We witness a phenomenon of propagation of irregularities in the process of partial
regularizations, before they disappear with the full regularization.

Example 6.8. If S = {[0, 2], [1, 3], [2, 3]}, then 1 is irregular, but 0 is regular. As
rS\S = {[1, 2]}, only 0 is irregular for rS. Because r2S\rS = {[0, 1]}, the state
r2S is regular. Therefore the irregularity of 0 is 2.

Example 6.9. Similarly, only 2 is irregular for R = {[0, 2], [1, 3], [2, 4], [3, 4]}, only
1 is irregular for rR, because rR\T = {[2, 3]}, and only 0 is irregular for r2R,
because r2R\rR = {[1, 2]}. As r3R\r2R = {[0, 1]}, the state r3R is regular. Hence
the irregularity of 0 is 3.
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Example 6.10. If T = {[0, 4], [1, 2], [2, 3], [3, 4]} then rT \T = {[0, 3]}, r2T \rT =
{[0, 2]} and r3T = {[0, 1]}. Therefore 0 is irregular for T , rT and for r2T , hence
the irregularity spectrum of 0 is {1, 2, 3} and its irregularity is 3.

Theorem 6.11. If S is a state and rmS is topological for some m ≥ 1, then rS is
regular, hence topological.

Proof. First prove together the cases m = 1 and 2, so let m = 1 or 2. Suppose to the
contrary that S is a state on [0, n] such that rmS is topological and [i, j] ∈ r2S\rS.
Thus there is k > j such that [i, k], [j, k] ∈ rS ⊂ rmS. The set {k ∈ [1, n] : k >
j, [i, k], [j, k] ∈ rmS} is non-empty; we now fix k to be its largest number. It is
claimed that [i, k], [j, k] ∈ S. Suppose not.

If [i, k] /∈ S then there is l > k with [i, l], [k, l] ∈ rm−1S ⊂ rmS. Then [j, k], [k, l] ∈
rmS, so [j, l] ∈ rmS by the topologicity of rmS, which contradicts the maximality
of k.

If [j, k] /∈ S then there is l > k with [j, l], [k, l] ∈ rm−1S ⊂ rmS. Then [i, k], [k, l] ∈
rmS so [i, l] ∈ rmS as rmS is topological, and since also [j, l] ∈ rmS, the maximality
of k is contradicted.

Thus [i, k], [j, k] ∈ S and hence [i, j] ∈ rS contrary to the assumption. Therefore
r2S = rS if either rS or r2S is topological.

Suppose that for some state S on [0, n] and some m > 2 the state rmS is
topological, but rS is not regular. Take the least such m over all states S on [0, n].
As rmS = rm−1(rS) is topological, by the minimality of m the state r(rS) = r2S
must be regular, hence r2S = rmS is topological. Thus by the case m = 2 already
proven, rS is regular.

In the theorem above, k must not be equal to 0. Indeed,

Example 6.12. The state S = {[0, 3], [1, 4], [2, 3], [2, 4]} is topological, but rS\S =
{[0, 2], [1, 2]} and r2S\rS = {[0, 1]}.

Moreover, we will see that for every ordinal β there exists a Hausdorff topology,
the irregularity of which is β.

Proposition 6.13. For every natural n there exists a topological state whose ir-
regularity is n.

Proof. This is true for n = 1, namely {[0, 2], [1, 2]}. So suppose that there exists
a topological state R = {[ak, bk] : 1 ≤ k ≤ l} on [0, n] whose irregularity is n − 1.
Let 1 < n < c1 < . . . < cl, and set Ik = [ak, ck] and Jk = [bk, ck]. Then S = {Ik :
1 ≤ k ≤ l} ∪ {Jk : 1 ≤ k ≤ l} is a topological state of irregularity n. Indeed, S
is topological, because there are no consecutive intervals in S. On the other hand,
rS = RtS, and if two intervals in rS have common right ends and have not been
simultaneously in S, then they are both inR, because the right ends of the elements
of S are strictly greater than those of the elements of R , so that r2S = rR ∪ S.
For the same reason rj+1S = rjR ∪ S for each natural j, which proves that the
irregularity of S is n.

The regularization of a topology need not be topological.

Example 6.14. The state {[0, 3], [1, 3], [1, 2]} is topological and its partial regular-
ization {[0, 3], [1, 3], [1, 2], [0, 1]} is regular but not topological, because its topologiza-
tion is {[0, 3], [1, 3], [1, 2], [0, 1], [0, 2]}. As the topologization of a regular state, the
last state must be regular by Proposition 6.15.
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Proposition 6.15. The topologization of a regular state is regular.

Proof. Let S be regular and consider [j, k] ∈ rTS, that is, there exists m > k

such that [k,m], [j, m] ∈ TS, and thus [j, m] =
⋃j

i=1 Ji and [j, k] =
⋃k

i=1 Ki,
where {Ji : 1 ≤ i ≤ j} and {Ki : 1 ≤ i ≤ k} are intervals belonging to S
such that the right end of Ji (respectively, Ki) is less than or equal to the left
end of Ji+1 (respectively, Ki+1). Use induction on j + k. If j + k = 2, then J1

∼ K1 ∈ S ⊂ TS. If l < j and m < k and Jj = Kk then I = J ∼ K =
⋃j

i=1 Ji

∼
⋃k

i=1 Ki =
⋃l

i=1 Ji ∼
⋃m

i=1 Ki, so the inductive assumption ensures I ∈ TS.
Otherwise either Jj ∼ Kk 6= ∅ or Kk ∼ Jj 6= ∅. In either case the non-empty
interval belongs to S. In the first case I =

⋃j−1
i=1 Ji ∪ (Jj ∼ Kk) ∼

⋃k−1
i=1 Ki, in the

second I =
⋃j−1

i=1 Ji

(⋃k−1
i=1 Ki ∪ (Kk ∼ Jj)

)
. Appeal to the inductive hypothesis to

get I ∈ TS.

However if we come back to compatible pretopologies on cascades, then we dis-
cover that this proposition is not new. Proposition 6.15 is equivalent to the fact
that the topologization of a compatible regular pretopology on a cascade of finite
rank is regular. But a compatible pretopology is Hausdorff and moreover every se-
quential cascade (not only of finite rank) is countable. Therefore Proposition 6.15
is a special case of Theorem 3.9.

7. Regularization of pretopologies of countable character

A convergence ξ is of countable character (first-countable) if x ∈ limξ F implies
the existence of a countably based filter G ⊂ F such that x ∈ limξ G. Therefore
a pretopology is of countable character, whenever every vicinity filter is countably
based. Countable character is a concretely coreflective property of convergences.
In particular, every infimum of convergences of countable character is of countable
character. This however is no longer the case in the category of pretopologies.

Example 7.1. Consider a countable fan, that is, the disjoint union {∞}∪{(n, k) :
n, k < ω} and let πm be a convergence defined by {∞} = limπm F for a free
filter F whenever F is finer than the cofinite filter of {(n, k) : k < ω, n ≤ m}.
The other points are isolated. This defines a descending sequence of Hausdorff
pretopologies of countable character (actually sequential), and clearly

∧
m<ω πm is

a convergence of countable character. But the infimum in the lattice of pretopologies∧P
m<ω πm = P

(∧
m<ω πm

)
is the well-known fan topology, which is Fréchet but not

of countable character.

Countable character is preserved by the partial regularization. In fact, if ξ is
of countable character and if x ∈ limrξ F , then there is a countably based filter G
such that x ∈ limξ G and adh\

ξ G ≤ F . Of course, x ∈ limrξ(adh\
ξ G) and adh\

ξ G
is countably based. And since the countable character is stable for infima, every
iterated partial regularization, hence also the regularization, of a convergence of
countable character is of countable character [9, Proposition 7.1].4 However an
infinitely iterated partial pretopological regularization of a pretopology of countable
character need not be of countable character, which is due to the fact that the
pretopological infimum in general does not preserve the character. Indeed, consider

4Actually this statement holds for convergences of any character.
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Example 7.2. Let A =
⊔

n,m<ω An,m be a sink endowed with its natural conver-
gence. We extend the convergence of A to X = {∞}∪A so that F0 converges to ∞.
This defines a topology τ of countable character. Notice that adh\

rkτ
F0 =

∧
m≤k Fk,

thus
∧

k<ω Fk is the coarsest free filter that converges to ∞ in rω
P τ , which shows

that rω
P τ is not of countable character.

Proposition 7.3. If a pretopology π of countable character is Hausdorff, then rπ
is Hausdorff.

Proof. If x is isolated, then the singleton {x} constitutes a base for π at x, hence
adhπ{x} = {x} is a base of x for rπ . If x is not isolated then there is a base (Vn)n

of the vicinity Vπ(x) such that Vn\Vn+1 6= ∅ for every n < ω, and
⋂

n<π Vn = {x}.
As π is Hausdorff,

{x} = limπ Vπ(x) = adhπ Vπ(x) =
⋂

n<ω

adhπ Vn,

hence rπ is Hausdorff, because the intersection of the base {adhπ Vn : n < ω} of
the vicinity filter of x in rπ is {x}.

Proposition 7.4. Let π be a pretopology of countable character. An element x is
irregular with respect to π if and only if there exists a sequence (xn)n such that

(7.1) x ∈ limrπ(xn)n\ adhπ(xn)n.

Proof. An element x is irregular for π if and only if adh\
π Vπ(x∅) does not converge

to x, that is, whenever there is V ∈ Vπ(x) and a decreasing filter base (Vn) of Vπ(x)
such that for every n < ω there is xn ∈ adhπ Vn\V . Hence (xn)n converges to x in
rπ but x /∈ adhπ(xn), which implies that x is irregular for π.

We observe that no separation axiom has been used in Proposition 7.4. The
characterization above cannot be extended to arbitrary convergences (not even
pseudotopologies) of countable character. It holds however for paratopologies of
countable character. A convergence is a paratopology [1] whenever x /∈ limF implies
the existence of a countably based filter H that meshes with F such that x /∈ adhH.

Proposition 7.5. Let π be a pretopology of countable character. An element x is
irregular with respect to π if and only if there exists a sequence (xn) and a bisequence
(xn,k) such that (xn,k)k is free for each n < ω, x /∈ adhπ(xn)n, but xn ∈ limπ(xn,k)k

for every n < ω, and

x ∈ limπ

∫
(n)

(xn,k)k.

Proof. Indeed, by Proposition 7.4 there is a sequence (xn) such that (7.1) holds.
In particular, if (Vm) is a decreasing base of Vπ(x) then for every m < ω there is
nm > nm−1 such that xn ∈ adhπ Vm for n ≥ nm. Consequently, for each such an n
there exists a sequence (xn,k)k on Vm for which xn ∈ limπ(xn,k)k. Since

∫
(n)

(xn,k)k

is finer than Vπ(x), it converges to x∅ in π. If (xn,k)k were not free for infinitely
many n, then

∫
(n)

(xn,k)k would be coarser than a subsequence of (xn)n, which must
not converge to x in π in view of (7.1). Therefore, (xn,k)k is free for almost all n,
hence for all n after having dropped a finite number of them.

Proposition 7.5 will be now extended to
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Lemma 7.6. If π is a pretopology of countable character, and x∅ ∈ limrπ F , then
there is F ∈ F and for each x ∈ F there is a sequential filter E(x) such that
x ∈ limπ E(x) and x∅ ∈ limπ E(F). If moreover x∅ /∈ adhπ F , then we can choose
E(x) to be free.

Proof. If (Vm)m<ω is a decreasing base of the vicinity filter Vπ(x∅), then x∅ ∈
limrπ F amounts to adh\

π Vπ(x∅) ≤ F , that is, adhπ Vm ∈ F for each m < ω. Let
V∞ =

⋂
m<ω adhπ Vm, and decompose F into F0 = F ∨ V c

∞ and F1 = F ∨ V∞,
where either F0 or F1 can be degenerate.

If x ∈ adhπ Vm\ adhπ Vm+1 (we do not exclude the case where the difference is
empty), then there is a sequential filter E(x) such that Vm ∈ E(x) and x ∈ limπ E(x).
As adhπ Vm ∈ F for each m < ω, then E(F0) ≥ Vπ(x∅) provided that F0 is non-
degenerate.

On the other hand, if x ∈ V∞ =
⋂

m<ω adhπ Vm = adhπ Vπ(x∅) (the latter holds
because π is a pretopology), then there is a sequential filter E(x) ≥ Vπ(x∅) such
that x ∈ limπ E(x), hence E(V∞) ≥ Vπ(x∅). Hence if F1 is non-degenerate, then
E(F1) ≥ E(V∞) ≥ Vπ(x∅). Therefore E(F) = E(F0) ∧ E(F1) ≥ Vπ(x∅).

If x∅ /∈ adhπ F and there is H ∈ F# such that E(x) is not free for every x ∈ H,
then the principal filter Nι(x) of x is finer than E(x), hence x∅ ∈ limπ Nι(F ∨H)
by the first part of the proof, which yields a contradiction, because Nι(F ∨H) =
F ∨H.

Classical simplest examples of non-regular topologies are of countable character.

Example 7.7. [5, Example 1.5.6] Consider the unit interval [0, 1] in which a basic

family of closed sets consists of the closed sets for the natural topology and of { 1
n

:

n < ω}. In this topology x = 0 is irregular. Then xn =
1
n

and xn,k =
1
n

+
1
k

verify
Proposition 7.5.

Example 7.8. Consider the unit disc in R2, the interior of which carries the
natural topology, while a neighborhood base of an element x∞ of the border is of the
form

{x : ‖x‖ < 1, ‖x− x∞‖ <
1
n
} ∪ {x∞}.

To illustrate Proposition 7.5 take any sequence (xn) of distinct terms on the border
converging to x∞ in the natural topology, and let (xn,k)k be a sequence converging
to xn from inside. We can also ask that the family {xn,k : k < ω} where n < ω be
discrete.

The contour
∫
(n)

(xn,k)k in the proposition above is not countably based. As π is
of countable character, the trace of Vπ(x) on {xn,k : n, k < ω} is countably based,
coarser than

∫
(n)

(xn,k)k, and converges to x in π. This fact suggests that regularity
can be studied with the aid of sequential cascades endowed with some basic irregular
pretopologies of countable character. Standard pretopologies on cascades are not of
countable character. We can however introduce on sequential cascades some other
pretopologies, which are of countable character, and which preserve most of other
properties useful in our study of regularity. In the case of an extended bisequence
{∅}∪ω∪{(n, k) : n, k < ω}, we define a fundamental irregular pretopology so that
the elements (n, k) are isolated, Vm = {n} ∪ {(n, k) : k ≥ m} is a neighborhood
base of n, and Vm = {∅} ∪ {(n, k) : n, k ≥ m} is a neighborhood base of ∅. We
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shall call this space a fundamental irregular bisequence. The partial regularization
of the fundamental irregular bisequence is the natural topology of the extended
bisequence.

Proposition 7.9. An element x of a Hausdorff pretopology of countable character
is irregular if and only if there is at x a homeormorphically embedded fundamental
irregular bisequence.

Proof. Let π be a Hausdorff pretopology of countable character, and x an irregular
point. By Proposition 7.5 there is a sequence (xn) and a bisequence (xn,k) such
that xn = limπ(xn,k)k for each n < ω, x = limπ

∫
(n)

(xn,k)k but x /∈ adhπ(xn)n.
Therefore, by taking a subsequence if necessary, we can assume that all the terms
of (xn)n are distinct, because rπ is Hausdorff and a fortiori T1. As {xn} ∪ {xn,k :
k < ω} is compact in π for every n < ω, and x = limπ

∫
(n)

(xn,k)k, we can, by taking
subsequences of (xn)n and of (xn,k)k for n < ω if necessary, find a neighborhood
base (Vn)n of x such that xn,k ∈ Vn\Vn+1 for every n < ω. It is clear that the
pretopology induced {x} ∪ {x : n < ω} ∪ {xn,k : n, k < ω} coincides with the
fundamental irregular topology.

If T is a sequential cascade fully embedded in ω<ω then for each t ∈ T there is
k < ω, and a sequence (n1, . . . , nk) of natural numbers so that t is identified with
(n1, . . . , nk). A fundamental topology of a sequential cascade T fully embedded
in ω<ω is defined by the following neighborhood bases B(t) = {Vt,m : m < ω} of
t ∈ T , where

Vt,m = {t} ∪ {(t, n, s) ∈ T : n ≥ m}.
Of course, Vt,m ⊂ T ↑(t). We observe that Vt,m is open. Indeed if t 6= r ∈ Vt,m then
there is a finite (possibly empty) sequence p such that r = (t, n, p) with n ≥ m,
hence Vr,0 = T ↑(r) ⊂ Vt,m. On the other hand, Vt,m is closed, for if s /∈ Vt,m, then
let r = min{t, s}. If r < t then there is m such that (r, m) ≤ t and then Vr,m+1 is
a neighborhood of s and t /∈ Vr,m+1. If r = t then there exist n < m and a finite
(possibly empty) sequence p such that s = (t, n, p) and thus T ↑(s) ∩ Vt,m = ∅. We
infer that the fundamental topology of a sequential cascade is Hausdorff, regular
and of countable character. It is coarser than the natural topology.

We have analogous situation as for standard pretopologies. If N (t) stands for the
neighborhood filter of t for the fundamental topology of a (monotone) sequential
cascade, then denote by N (l)

(k)(t) the restriction of the neighborhood filter of t, of
level k, to the level T (l) of T . The closure (from the level l to the level k) is defined,
as for the natural topology, by

t ∈ cl(l)(k) A ⇔ A ∈
(
N (l)

(k)(t)
)#

.

If T is of finite rank, then we can decompose the closure

cl A =
⋃

k≤l≤r(T )

cl(l)(k) A.

It is straightforward that for the fundamental topology of a monotone cascade
of finite rank,

(7.2)
(
cl(m)

(l)

)\

N (m)
(k) (t) = N (l)

(k)(t)

for k < l < m.
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Let N (t) be the neighborhood filter of t for the fundamental topology, and let
V(t) be a vicinity filter at t ∈ T of a pretopology on a sequential cascade T . If t

is of level k and l > k, then V(l)
(k)(t) denotes the restriction of V(t) to the level l of

T . A pretopology on T is said to be fundamental if for every 0 ≤ k < l ≤ r(T ),
either V(l)

(k)(t) = N (l)
(k)(t) or V(l)

(k)(t) is degenerate for every t of level k. As for a
standard pretopology, we associate a state with a fundamental pretopology so that
[k, l] belongs to the state if and only if V(l)

(k)(t) is non-degenerate for each t of level
k.

It follows from (7.2) that

Proposition 7.10. A fundamental pretopology on a cascade of finite rank is regular
if and only if the corresponding state is regular.

Let us stress that (4.2) does not hold for the fundamental topology of a sequential
cascade. One has only the inequality ≤. Roughly speaking, the equality is charac-
teristic to topologies, which are the topologizations of some minimal pretopologies.

In view of Proposition 7.9 one could expect that if the irregularity of an ele-
ment x of a Hausdorff pretopology of countable character is n, then there exists at
x a homeomorphically embedded maximally irregular fundamental multisequence
of rank n + 1 (hence of irregularity n). However none of the two fundamental
maximally irregular pretopologies of rank 3 (and irregularity 2) can be homeomor-
phically embedded in a topology, because they are non-topological. In fact, the
restriction of a topology is topological, because of the reflective character of topo-
logicity. Here we have an example of a Hausdorff topology of countable character,
and of irregularity 2.

Example 7.11. Let T be a (monotone) sequential cascade of rank 3. For every
t ∈ T of rank 2 split T+(t) into two disjoint infinite sets T+

0 (t), T+
1 (t). We shall

say that the elements belonging to T+
0 (t) with t of level 2, and those of T+

1 (t) with t
of level 2 are of level 31. Let M(t) stand for the neighborhood filter of t with respect
to the fundamental topology. We define a topology on T by:

N (30)
(0) (∅) = M(30)

(0) (∅),

N (30)
(2) (t) = M(30)

(2) (t),

N (31)
(1) (t) = M(31)

(1) (t),

N (31)
(2) (t) = M(31)

(2) (t).

The other free restrictions of M are degenerate. This is a topology of countable
character, and of irregularity 2.

8. Ramified fundamental cascades

Proposition 7.9 characterizes irregular elements of Hausdorff pretopologies of
countable character in terms of a homeomorphically embedded fundamental irreg-
ular bisequence. In an attempt at characterizing elements of irregularity n > 1 of
such spaces, one encounters a new phenomenon already for irregularity 2.

Indeed, let x be an element of irregularity 2 of a Hausdorff pretopology π of
countable character on X. This means that x is irregular for rπ, which is of
countable character and Hausdorff by Proposition 7.3, and thus by Proposition 7.9,
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there is a homeomorphically embedded fundamental irregular bisequence f : T → X

such that f(∅) = x; in particular, f(n) = limrπ f(n, k)k and x = limrπ f(V(2)
(0) (∅)),

but x /∈ adhrπ f(n)n.

Case 1. Now, if x ∈ adhπ f(V(2)
(0) (∅)), then by taking a subcascade if necessary, we

can assume that x = limπ f(V(2)
(0) (∅)).

Case 2. Otherwise by Lemma 7.6, T can be extended to a fundamental cascade
S of rank 3, and f to a map F : S → X so that F (t, k)k is free and
F (t) = limπ F (t, k)k for every t ∈ max T , and x = limπ F (V(3)

(0) (∅)).

Consider now another alternative regarding f : T → X.
Case A. If f(n) = limπ f(n, k)k for infinitely many n, then by taking a subcascade

corresponding to those n, we may suppose that this holds for each n < ω.
Case B. If on the contrary, there is n0 such that f(n) 6= limπ(f(n, k))k for n ≥ n0,

then by taking a subcascade corresponding to those n, we can assume that
the property holds for each n < ω. This means that f(n) is irregular (with
respect to π) for each n, and thus by Proposition 7.9, there is an extension
V of rank 3 of T , and an extension G of f to V such that G|V ↑(n) is
a homeomorphically embedded fundamental irregular bisequence for each
n < ω.

If Cases 1. and A. occurred simultaneously, then we would get a characterization
of the irregularity 1 of x, that is, [0, 2], [1, 2]. If Cases 1. and B. hold then the
multisequence G is of the type [0, 2], [1, 3], [2, 3]. If Cases 2. and A. hold then the
multisequence F is of the type [0, 3], [1, 2], [2, 3]. As for the simultaneity of Cases 2.
and B., there is no type which corresponds. This is the situation of Example 7.11.
In this case, the map F ∪G : S ∪ V → X presents a new type of embedding, which
will be referred to as [0, 30], [2, 30], [1, 31], [2, 31]. It is what we will call a ramified
trisequence.

Let us notice that the existence of a homeomorphically embedded fundamental
maximally irregular multisequence f of rank 3 does not imply that f(∅) has the
irregularity 2.

Example 8.1. Consider a cascade S of rank 3 endowed with a fundamental pre-
topology of the type [0, 2], [1, 3], [2, 3], and a cascade T of rank 2 endowed with a
fundamental pretopology of the type [0, 2], [1, 2]. Let us identify the elements of level
0 and 1 of the two cascades, but distinguish the other levels. A way of representing
the resulting pretopology is to form a set of subintervals of a tree

0 < 1
< 20 < 30

< 21
.

This set is the following: T = {[0, 20], [1, 30], [20, 30], [0, 21], [1, 21]}. Notice that T
includes {[0, 20], [1, 30], [20, 30]}, that is, the corresponding pretopology admits at 0
a homeomorphically embedded maximally irregular multisequence of rank 3. But
rT \T = {[1, 20], [0, 1]}, so that rT is regular.

The trisequence in Example 8.1 is not openly embedded, because [0, 21], [0, 21]
correspond to filters convergent to some elements of that trisequence from outside.

A ramified level tree L is the binary tree of height ω, that is, such that for each
l ∈ L, the set L+(l) of immediate successors of l contains two elements. A ramified
level tree can be represented as the tree of finite sequences, the terms of which are
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0 or 1. As every tree the ramified level tree admits the level (ordinal) function:
the root is of level 0, and if the level hL(l) has been defined till m < ω, then the
minimal elements of {l ∈ L : hL(l) > m} are of level m + 1}. A ramified type is a
downwards closed subtree of L with finite branches. Therefore each non-maximal
element of a ramified type has either one or two immediate successors.

Let L be a ramified type. A (sequential) ramified cascade T of type L is a
monotone sequential cascade for which a map λ : T → L is defined so that

λ(∅) = ∅,

λ(T+(t)) = L+(λ(t)),

l 6= ∅ ⇒ cardλ−1(l) = ∞.

If t ∈ T then λ(t) is called the ramified level of t.
A standard pretopology of a sequential ramified cascade T of type L is defined

analogously as that for a sequential cascade, that is, for every r, s ∈ L with r < s
either Vs

r (t) = N s
r (t) or Vs

r (t) is degenerate for every t with λ(t) = r. Here V stands
for the vicinity system of a pretopology and N for the neighborhood system of the
natural topology of T , while Vs

r (t) and N s
r (t) stand respectively for the restrictions

of the vicinity and the neighborhood filters of t with λ(t) = r to the elements of
ramified level s. Also the definition of fundamental pretopologies obviously extends
that for usual sequential cascades.

A map f : T → W (from one ramified cascade to another) is level-preserving if
there is a map ϕ : λT (T ) → λW (W ) (called the level map of f) such that

λW ◦ f = ϕ ◦ λT .

Proposition 8.2. A level-preserving map f : T → W is continuous if and only if
f(Vs

r (t)) ≥ Vϕ(s)
ϕ(r) (f(t)) for every couple r < s of ramified levels of T and for each t

of level r, where ϕ is the level map of f .

A state S on a ramified level tree L is a finite set of intervals of cardinality at
least 2 of L. The (ramified) type of S is the downwards closure of the elements of
S. Of course, it is a subtree of L. The rank of a state is that of its ramified type.

A state T associated with a standard (or a fundamental) pretopology is defined
by [r, s] ∈ T if and only if Vs

r is non-degenerate.5 Regularity, partial regularization
and topologicity of a state on a ramified type are defined in the same way as for
a state on an interval of natural numbers. It is a straightforward generalization of
Proposition 5.1 that

Proposition 8.3. A standard (fundamental) pretopology on a ramified cascade is
topological (resp., regular) if and only if its state is topological (resp., regular).

Let T,W be ramified cascades (considered either with standard or fundamental
pretopologies) and T ,W be the corresponding ramified states.

If a map f : T → W between sequential cascades is continuous, then

f(T+(t))\W+(f(t) ∪ {f(t)}
is finite for every t ∈ T\max T . By removing, for every t, the finite number of
successors that derogate from that inclusion, we get a restriction of f , which is
order-preserving. Consider a level-preserving map f : T → W , and its level map
ϕ : λT (T ) → λW (W ). Then

5that is, Vs
r (t) is degenerate for each t of ramified level r.
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Proposition 8.4. If a level-preserving map f : T → W is continuous then its level
map fulfills ϕ(T ) ⊂ W.

Proof. Let f be continuous and let [r, s] ∈ T . This means that Vs
r (t) is non-

degenerate for every t ∈ λ−T (r). As f is level-preserving, λW (f(t)) = ϕ(r) and
λW (f(v)) = ϕ(s) for every v ∈ λ−T (s), and f(Vs

r (t)) ≥ Vϕ(s)
ϕ(r) (f(t)), because f is

continuous. This implies that Vϕ(s)
ϕ(r) (w) is non-degenerate (for each w of level ϕ(r)),

hence [ϕ(r), ϕ(s)] ∈ W.

A state on a ramified type is maximally irregular if its irregularity is maximal
among all states of a given rank, and if it is minimal (with respect to inclusion)
among the states of this irregularity. There are ramified states of maximal irregu-
larity that are not minimal. This is in contrast with the situation of states on an
interval.

Example 8.5. Let T consist of [0, 30], [2, 30], [1, 2], [1, 31], [2, 31]. Then rT \T =
{[0, 2]} and r2T \rT = {[0, 1]} and r2T is regular, hence the irregularity of T is
2 and is maximal for the rank 3. However {[0, 30], [2, 30], [1, 2]} is a maximally
irregular state on {0, 1, 2, 30}, so that T is not minimal.

Let T be a state on P . The set act T consists of active elements of T , that is,
of intervals that were used in obtaining rT \T . If I ∈ act T then there is J ∈ act T
such that J 6= I and max I = max J . Let

Tmax = {I ∈ T : max I ∩max P 6= ∅}.
The set Tmax does not produce anything new during the second regularization, that
is,

(8.1) r2T \rT = r(rT \Tmax)\rT .

If T is maximally irregular then Tmax ⊂ act T . Indeed, if I ∈ Tmax\ act T then
rk(T \{I}) = rkT \{I} for each k < ω. This means that T would not be a minimal
state corresponding to its irregularity.

It may happen that act T ∩ act(rT ) 6= ∅, even for a non-ramified state T . Of
course, such a state T must not be maximally irregular, because act T = Tmax for
a non-ramified maximally irregular state T .

Example 8.6. Let T = {[0, 3], [2, 3], [1, 4], [3, 4]}. Then act T = T , rT \T =
{[0, 2], [1, 3]}, and act(rT ) = {[0, 3], [2, 3], [1, 3]}. As mentioned T is not maximally
irregular, because (rT )(3) = {[0, 3], [2, 3], [0, 2], [1, 3]} has 4 elements on [0, 3].

We notice that

Proposition 8.7. If a state T is maximally irregular, then the elements of
⋃
T of

level ≤ 2 form a chain.

Proof. In fact, if T is a state and T0 = T ∩ L↑(10) and T1 = T ∩ L↑(11), then
(rT )0 = rT0 and (rT )1 = rT1, so that if T0 and T1 were both non-empty, it would
be enough to keep the one of the irregularity equal to that of the whole T , contrary
to the (set-theoretic) minimality of T . On the other hand, if L+(∅) = {1} and
L+(1) = {20, 21}, then let T0 = {I ∈ T : 20 ≤ max I} and T1 = {I ∈ T : 21 ≤
max I}. In this case, because [0, 1] can be obtained merely as an element of either
rkT0 or of rkT1 for some k, the irregularity of T will be equal to the irregularity
either of T0 or of T1, hence will not be maximal.
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Contrary to non-ramified maximally irregular states there can be ramified states
that have active non-maximal intervals.

Example 8.8. Consider S = {[0, 50], [1, 41], [2, 41], [2, 51], [3, 51], [3, 40], [40, 50]}.
Then rS\S = {[0, 40], [1, 2], [2, 3]}, which shows that [1, 41], [2, 41] ∈ actS\Smax.
On the other hand r2S\rS = {[0, 3]}, r3S\r2S = {[0, 2]}, r4S\r3S = {[0, 1]} and
r4S is regular. It is easily seen that S is maximally irregular.

As we will see, only a special subclass of maximally irregular states is sufficient
to characterize finite irregularity of pretopologies of countable character. We define
elementary states by induction on the rank. If T a state starting at 1 with the
property that there is a unique ramified level t such that [1, t] ∈ T , then

T ∗ = T \[1, t] ∪ [0, t].

The elementary state of rank 1 is the unique state of rank 1 that is {[0, 1]}. The
elementary state of rank 2 is the unique maximally irregular state of rank 2, that is
{[0, 2], [1, 2]}. Suppose that we have defined elementary states S of rank less than
or equal to m with the property that⋃

S ∩ {l ∈ L : hL(l) ≤ 2} is a chain,(8.2)

∃!s0,s1∈L [0, s0] ∈ S, [1, s1] ∈ S,(8.3)

an elementary state S of rank m + 1 is of the form

(8.4) S = S1 ∪ S∗0 ,

where S0,S1 are elementary states starting from 1, of ranks 1 ≤ r(S0), r(S1) ≤ m
with m = max(r(S0), r(S1)). It is clear that S given by (8.4) fulfills (8.2) and (8.3).

Proposition 8.9. Each elementary state of rank ≥ 2 is maximally irregular.

Proof. This is true for m = 2, where the irregularity of {[0, 2], [1, 2]} is 1. Now
if S0,S1 are elementary states starting at 1 such that 1 ≤ r(S0), r(S1) ≤ m and
m = max(r(S0), r(S1)), then the state S from (8.4) is of rank m + 1 and fulfills

rkS = rkS1 ∪ rkS∗0 ,

for each k ≤ m − 1 and the first k such that both [0, 1] ∈ rkS and [0, 2] ∈ rkS is
equal to max(ρ(S), ρ(T )), hence to m− 1.

We call elementary a fundamental pretopology on a sequential cascade if the
corresponding state is elementary.

Theorem 8.10. If π is a Hausdorff pretopology of countable character, m ≥ 1 and

(8.5) x ∈ limrmπ(xn)n\ adhrm−1π(xn)n,

then there exists homeomorphically embedded in π, an elementary fundamental ram-
ified multisequence f of rank m + 1 such that f(∅) = x and f(n) = xn for each
n < ω.

Proof. This is true for m = 1 because of Propositions 7.4 and 7.9. So suppose
that the claim holds for m ≥ 1, and let π be a Hausdorff pretopology of countable
character on X such that

x ∈ limrm+1π(xn)n\ adhrmπ(xn)n.
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Because rmπ is of countable character and Hausdorff (by Proposition 7.3), we can
apply Proposition 7.9 to rmπ to infer the existence of an elementary fundamental
bisequence f on X, which is homeomorphically embedded in rmπ with f(∅) =
x and f(n) = xn. Moreover, by Hausdorffness, we can require that there be a
collection (Wn)n of disjoint subsets of X such that Wn ∈ Vrmπ(xn) for every n < ω.

Let p be the least natural number such that xn ∈ limrpπ(xn,k)k for almost each
n < ω, where xn,k = f(n, k). Because p ≤ m, by inductive assumption, for every
such n there is homeomorphically embedded an elementary fundamental ramified
multisequence fn from a ramified cascade Tn of rank p+1 to Wn, such that fn(∅) =
xn and fn(k) = xn,k for each n, k < ω. Of course, in case p = 0, the multisequences
fn are of rank 1, so that the underlying sequential cascade is endowed with a regular
topology. Because there are finitely many types of elementary fundamental ramified
cascades of finite rank, by taking a subsequence of (n)n if necessary, we can assure
that Tn are all of the same type.

Let q be the least natural number such that the filter F ≈ {{f(n, k) : k < ω} :
n < ω} converges to x in rqπ. Then m = max(p, q) for otherwise x ∈ adhrmπ(xn)n,
contrary to the assumption.

By Hausdorffness, we can assume that there is a collection {Wn,k : n, k < ω} of
disjoint sets such that Wn,k ∈ Vrqπ(xn,k).

If q = 0 then x ∈ limπ F . Otherwise, by Lemma 7.6, for every (n, k) there exists
a free sequential filter E(n, k) ≈ (xn,k,l)l, which converges to xn,k in rq−1π, and
such that the filter G ≈ {{xn,k,l : k, l < ω} : n < ω} converges to x in rq−1π.

Let v be the least natural number such that E(n, k) converges to xn,k in rvπ
for almost n, k. Of course, v ≤ q − 1. Hence, by inductive assumption, there is
homeomorphically embedded an elementary fundamental ramified multisequence
fn,k (from a ramified cascade Sn,k to Wn,k) of rank v + 1 such that fn,k(∅) = xn,k

and fn,k(l) = xn,k,l for each n, k, l < ω. Of course, in case v = 0, each fn,k of rank
1, hence the underlying sequential cascade is endowed with a regular topology.
Because there are finitely many types of elementary fundamental ramified cascades
of finite rank, by taking a subcascade R of {∅}∪{(n) : n < ω}∪{(n, k) : n, k < ω}
if necessary, we can assure that Sn,k are all of the same type.

Let w be the least natural number such that x ∈ limrwπ G. Of course, q − 1 =
max(v, w) for otherwise x ∈ limrqπ F . If w = 0 then we stop the construction.
Otherwise we continue on applying Lemma 7.6 to G, and so on.

We construct now a ramified cascade by taking the disjoint union of R, Tn, Sn,k

and possibly of other cascades resulting from the described construction. Then we
quotient so that ∅Tn

coincide with n ∈ R, T+
n (∅Tn

) coincide with R+(n), ∅Sn,k

coincide (n, k) ∈ R, and so on. The constructed component multisequences coincide
at the points that we have identified. Moreover we took care that the individual
component cascades have ranges in disjoint vicinities of distinct points. Therefore
the constructed multisequence is an injection. The pretopology of the constructed
cascade is induced with the component cascades with the exception of the vicinity
of the least element ∅. There is only one non-zero ramified level s for which V(s)

0 (∅)
is non-degenerate. If in our construction q = 0, then it will correspond to the filter
F , if w = 0 then it will correspond to the filter G, and so on. The constructed
cascade is elementary of rank m + 1.
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Because a map between pretopologies of countable character, is continuous if
and only if it is sequentially continuous, the constructed injective multisequence is
a homeomorphic embedding.

Corollary 8.11. If m is the irregularity of an element x of a Hausdorff pretopology
of countable character, then there exists homeomorphically embedded, a maximally
irregular fundamental ramified multisequence f of rank m + 1 such that f(∅) = x.

Example 8.1 shows that the converse is true only for irregularity 1. However,

Proposition 8.12. If there exists homeomorphically openly embedded a maximally
irregular fundamental ramified multisequence f of rank m + 1 such that f(∅) = x,
then m is irregularity of x.

Example 8.13. Consider the state

S = {[0, 50], [1, 41], [2, 41], [2, 51], [3, 51], [3, 40], [40, 50]}

from Example 8.8. By Corollary 8.11, there is a homeomorphically embedded ele-
mentary state. We claim that

R = {[0, 50,0], [30, 40,0], [40,0, 50,0], [1, 31], [2, 31], [2, 40,1], [30, 40,1]}

is one. It is an elementary state obtained by the extension procedure as in Propo-
sition 8.9, that is, R = R0 ∪R∗1, where R0 = {[1, 31], [2, 31]} and

R1 = {[1, 50,0], [30, 40,0], [40,0, 50,0], [2, 40,1], [30, 40,1]}.

In turn, R0 and R1 are elementary states, and R1 = R1,0 ∪ R∗1,1, where R1,0 =
{[2, 40,1], [30, 40,1]} and R1,1 = {[2, 50,0], [30, 40,0], [40,0, 50,0]}. The homeomorphic
embedding can be defined as follows:

ϕ([0, 50,0]) = [0, 50], ϕ([30, 40,0]) = [3, 40], ϕ([40,0, 50,0]) = [40, 50], ϕ([1, 31]) = [1, 41],

ϕ([2, 31]) = [2, 41], ϕ([2, 40,1]) = [2, 51], ϕ([30, 40,1]) = [3, 51].
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