MONOTONICITY OF SOME FUNCTIONS IN CALCULUS
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1. INTRODUCTION

In the first semester of calculus a student learns that if a function f is continuous
on an interval [a,b] and has a positive (negative) derivative on (a,b) then f is
increasing (decreasing) on [a,b]. This result is obtained easily by means of the
Lagrange Mean Value Theorem [Ap, Theorem 5.11, p. 110]. The functions that the
student proves monotone in this way are usually polynomials, rational functions, or
other elementary functions.

A refinement of the method of proving monotonicity a method that applies to
a wide class of quotients of functions, even when the quotient itself is messy to
differentiate—can be obtained as an application of the Cauchy Mean Value Theo-
rem, also known as the Generalized Mean Value Theorem (cf. [Ap, p. 110], [Rog, p.
69], [St, p. 178]). Because of the similarity of the hypotheses to those of 'Hopital’s
Rule, we refer to this result as the I’'Hopital Monotone Rule, or LMR for short. A
proof of this result appears in [AVV2, Theorem 1.25| (see also [AVV1, Lemma 2.2]).
The present paper was motivated by the recent interesting work of I. Pinelis (cf.
[Pil], [Pi2]). While some results in this paper are not new, our methods of proof
via LMR (Theorem 1.1 below) are much simpler than the proofs appearing in the
literature. For completeness we reproduce a proof of LMR here.

1.1. Theorem (LMR). Let —o0 < a < b < oo, and let f,g : [a,b] — R be
continuous on [a,b], differentiable on (a,b). Let g'(x) # 0 on (a,b). If f'(x)/¢'(x)
is increasing (decreasing) on (a,b), then so are

[f (@) = J(a)]/lg(x) = g(a)] and [f(x) = f()]/lg(x) — g(b)].

If f'(x)/g'(x) is strictly monotone, then the monotonicity in the conclusion is also
strict.

Proof. We only prove the assertion for the first ratio (f(z) — f(a))/(g(z) — g(a)),
since the other is similar. By the Intermediate Value Theorem for the derivative
[Ap, Theorem 5.16, p. 112] we have either ¢'(z) < 0 for all = or ¢’'(xz) > 0 for all x.
We consider only the former case, since the other is similar. Likewise, we consider
only the case where f'(x)/¢'(x) is increasing, since the other is similar. Next, by



2 G. D. ANDERSON, M. K. VAMANAMURIHY, AND M. VUORINEN

the Cauchy Mean Value Theorem, for each = € (a,b) there exists some y € (a, )
such that
f) — fl@) _ ) _ I

_f
g(x) —gla)  ¢'(y) ~ g'(z)

or, equivalently,
(9(x) = g(a) ['(x) = (f(x) = [(a))g'(x)
1.2 > 0.
2 (6(0) — o) (7] -
Now since ¢'(x) < 0on (a,b), we have g(x)—g(a) < 0. Hence ¢'(x)/(g(z)—g(a)) >

0 on (a,b), and multiplying (1.2) by this positive quantity we get

d [f2) = f(a)

dr | g(x) — g(a)
on (a,b). O

E

The next result extends LMR to the case of indeterminateness at oo (cf. [Pil,
Proposition 1.1]).

1.3. Theorem. For —oco < a < o0, let f and g be differentiable on (a,00), and let
f(z) and g(x) tend to finite limits L and M, respectively, as x tends to co. Let g'(x)
never vanish on (a,00). If f'(x)/g'(x) is increasing (decreasing) on (a,0), then so

is [f () — L]/lg(x) — M].

Proof. By the Intermediate Value Theorem for derivatives [Ap, Theorem 5.16, p.
112] we have ¢'(z) < 0 or ¢’'(xz) > 0 for all z € (a,00). We assume the former, since
the latter case is similar. Hence g is strictly decreasing on (a,00). Next, we assume
that f'(x)/¢'(x) is increasing, since the other case is similar. Fix z € (a, c0), and let
y € (z,00). Then, by the Cauchy Mean Value Theorem, there exists some z € (z, y)
such that

1)

g(r)

W _fe) I

=20

_ }‘
—gly)  d(2)

That is,
(f(z) — fW)g'(x) = (g(x) — g ['(x)
(g(x) = g(y))g'(x) B

Multiplying by the negative factor ¢'(x)/(g(z) — g(y)) and letting y — oo, we get
(d/dx)[(f(z) — L)/(g(x) — M)] > 0, and the result follows. O

0.

1.4. Remark. Theorem 1.3 obviously has an analogous counterpart if oo is replaced
by —oc.
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We next consider some applications of Theorem 1.1. First, let f be the complex
function defined by

(1.5) f(z) =

zcothz  for z € C\{inm, n an integer, n # 0},
1 it 2 =0.

This function occurs frequently in Real and Complex Analysis, Fourier Analysis,
and Number Theory (|L],[Sp|). Beginning with the Bernoulli series [Sp, p. 171, Ex.
163]

z . B
= E —2" for |z| < 2,
e? —1 ‘ n!

n—

one can show that

. B{’ﬂ on
) =1+ (2;)|(22)2 ' for |2| < .
n=I ’

It is well known that By = 1, By = —1/2, B, = 1/6, and By, ;1 = 0forn =1,2,3,...
(cf. [AAR],[T]). In particular, it follows that (f(z) —1)/z* tends to 2By = 1/3 as
z tends to 0. By using the Mittag-Leffler Theorem [Sp, p. 192, Ex. 35| we obtain
the partial fraction decomposition

(z) -1 - 1
(1.6) % =2 Z m z #1nT, n a nonzero integer.

n=1

In particular, it follows that the function (f(z) — 1)/2? is increasing on (—oc, ()
and decreasing on (0, co), with range (0,1/3). We now use LMR to give elementary
proofs of this and related results.

1.7. Theorem. (1) The function F(x) = (cothx — 1/x)/tanha for x # 0 and
F(0) = 1/3, is decreasing on (—o0,0] and increasing on [0,00), with range [1/3,1).
Moreover, F'(0) = 0.

(2) The function G(x) = log((sinhz)/x)/log(coshx) for x # 0 and G(0) = 1/3,
is decreasing on (—o00,0] and increasing on [0,00), with range [1/3,1). Morcover,
G'(0) = 0.

(3) The function H(z) = (f(z) — 1)/2*> = (cothz — 1/z)/z for x # 0 and
H(0) = 1/3, is increasing on (—o0,0] and decreasing on [0, 00), with range (0,1/3],
where f is as in (1.5). Moreover, H'(0) = 0.

Proof. Since all three functions F', GG, and H are even, it is enough to establish the
assertions on [0, 00). Since the limiting values are clear by I’'Hopital’s Rule, we need
only prove the monotonicity. Since each of the functions has the indeterminate form
0/0 as = tends to 0, we can apply LMR in each case.

For (1), F(z) = (x — tanhx)/(« tanh®*2). The derivative ratio for this function
may be simplified to 1/(1 + (4x/sinh(2x))). By LMR, the ratio 4x/sinh(2z) is
clearly decreasing on (0,00). Hence by LMR the monotonicity for F' follows. For
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F'(0) we write (F(x) — F(0))/x = (32 — 3tanhz — 2 tanh® z) /(322 tanh® z). Since
(tanh 2) /o tends to 1 as © — 0, by repeated application of 'Hopital’s Rule we get

3x — 3tanhx — z tanh? z

! BT
F(0) = 5161_r>r(1) 3t
3 —3sech’z — tanh? z — 22 tanh z sech’z
= lim ‘
z—0 1243
_ tanh® 2 — z tanh 2 sech?x _ tanhz — z sech’z
= lim ‘ = lim
=0 6’ z—0 622
_ x sech?z tanh _ sech?z tanh z
= lim =]lim—m—— =
2—0 61 z—0 6

For (2), the derivative ratio for the function G(z) is precisely F(x). Hence, by
LMR, the asserted monotonicity for G follows. Again, G'(0) = 0. The proof is
similar to that of F'(0) = 0, hence omitted.

Finally for (3), H(z) = (x cosh x —sinh z) /(2? sinh x), so that the derivative ratio
can be simplified to 1/(2 4+ 2/ tanhz). Now by LMR, the ratio =/ tanh x is clearly
increasing, so that the monotonicity for H follows by LMR. That H'(0) = 0 follows
easily from the Mittag-Leffler partial fraction decomposition (1.6). This can also be
shown directly by repeated application of 'Hopital’s Rule, as in Part (1). We omit
the details. 0J

1.8. Remark. The assertion (2) in Theorem 1.7 improves the result in [Mit, 3.6.9,
p. 270).

2. RESULTS FOR TRIGONOMETRIC FUNCTIONS

It is natural to consider a trigonometric analogue of Theorem 1.7. We have the
following.

2.1. Theorem. The functions defined by

rtan® log(sec x
flo) = T g gy = o8]

tanx — log(x csc x)

, for x # 0,

and f(0) = g(0) = 3, are decreasing on (—m/2,0] and increasing on [0, 7/2), with
range [3,00). In particular,
(sin :1;)3
cosx <
T

for all nonzero x in (—7w/2,7/2). Moreover, f'(0) = ¢'(0) = 0.
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Proof. Since f and g are even functions, it is enough to establish the assertions on
(0,7/2). By LMR f is increasing if 1+[4x/ sin(2x)] is so, which is clear. Next, again
by LMR, the result for g(x) follows from that for f(z). The limiting values at the
end points and the values of derivatives at 0 follow easily by repeated application
of 'Hopital’s Rule. We omit the details. Ol

In [Wi] J. Wilker posed the problem of proving that

sinz\?  tanux ™
(a) + >2, 0<z<—,
€T z 2

and of finding

. 2
Sin & tan x
() e
(b) c= inf ! ! .

0<z<m/2 x3tanx

In [SJVA]| Anglesio showed, by a long elementary proof, that the function in (a)
is increasing on (0,7/2) and that the value of ¢ in (b) is 16/7%. A shorter proof,
using properties of Bernoulli numbers, was given in [GQQL]. In [Pi2] I. Pinelis
obtained these results by using I’'Hopital-type rules for monotonicity. We here give
an alternative proof for Part (a) that uses LMR.

2.2. Theorem. The function defined by

. 2
S & tanx
if
flz) = ( . > + - it x #0,
2 if =0,

is decreasing on (—m/2,0] and increasing on [0, 7/2), with range [2,00). Moreover,

f'(0) =0

Proof. Since f is an even function, it is enough to establish the assertion on [0, 77/2).
The limiting values at the end points and the value of the derivative at 0 follow
easily by repeated application of I’'Hopital’s Rule. We omit the details. Next,
f(x) = g(z)/2?, where g(x) = sin®z + z tan z. Now

¢ (r) = 2sinz cosz + xsec’ x + tanx

and
1 " 2 12 2 2
59 () = cos® x — sin” z + sec” x + wsec” x tanx = F(x),

say. We need to show that F' is increasing on [0, 7/2). Clearly,
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F'(z) = —4sinz cos + 3sec? ztan x + 2x sec? 2 tan? 22 + wsec’
‘ . ; . ‘
= 3sec’ xtanx — 3sinax cosx + wsec’ & — sinx cos x + 2w sec? x tan? o
> 2usec? xtan® x> 0,

since tanx > x > sinx, and secz > 1 on (0,7/2). O

2.3. Remark. It can be shown that

sin & 2 tan x
+ -2
16 T T 16 8
— < < — =

4 ¥ tanz 90 45’

for all nonzero values of x in (—m/2,7/2). The lower bound is the limit as x tends
to +m/2 or —w /2, while the upper bound is the limit as x tends to 0. The lower
bound assertion follows from the Wilker-Anglesio result (|SJVA|, [Pi2|). We only
need to show that the upper bound is the limit as x tends to 0. Denote this limit by
M. Since (tanx)/x tends to 1 as x tends to 0,

™

M — im sinx + tgn x — 2x? — lim 1 — cos(2z) + 2.}'17 tanz — 4x2‘
z—0 6 z—0 28
Expanding by Taylor series about 0 and simplifying, we get M = [2°/6! +4/13]/2 =

16/90 = 8/45.

2.4. Theorem. The functions

2sinx + tanz 2sin’z + tan?x
flx) = ———— and g(x) = 5 for x #£ 0,
€ z

f£(0) = g(0) = 3, are decreasing on (—n/2,0] and increasing on [0, 7/2), with range
[3,00).

Proof. Since f and g are even functions, it is enough to establish the assertions on
(0,7/2). For f, by LMR, we need only prove that 2 cos x + sec? z is increasing. The
derivative of this expression is

2sec? ptanx — 2sina = 2(sec® 2 — 1) sinz > 0,

since sinz > 0 and secz > 1.
For g, by LMR applied twice, we need only prove that sec* z + 2scc? z tan® x +
2cos? x — 2sin? z is increasing. The derivative of this function is

8sec' rtanx — 8sinx cos x + 4sec 7 tan®
_ cnrd : L et S e
= 8(sec’ x — cos x) sinx + 4 sec” x tan”

> 4sec? ztan® x> 0,
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since secx > 1 > cosx, and tanz > (0. The limiting values at the end points and
derivatives at 0 are obtained easily by repeated application of I’Hopital’s Rule. [

2.5. Corollary. The function f(x) = tanzsin®x — 2% is increasing on (—w/2,7/2).
In particular, cosx < sin® x/z?, for all nonzero x in [—7/2,7/2].

Proof. f'(r) = tan’z + 2sin*z — 322 > 0, for all nonzero x in (—7/2,7/2), by
Theorem 2.4 . ]

3. RESULTS FOR ALGEBRAIC FUNCTIONS

3.1. Theorem. For a € (1,00), let f:[—1,00) = R be defined by

f(x): (1—}—:12u1 z’fx;«éO,
a if ©=0.

Then f is increasing on [—1,0¢). In particular, we have the sharp inequalities

(a) (14 x)* > 1+ ax for all nonzero x in [—1,0c), and

(b) (14+2)* <1+ (2*—1)x for all x € (0,1).
Proof. Since f(z) = g(x)/x, where g(x) = (1+2)* — 1, and ¢(0) = 0, we can apply
LMR. Now ¢'(z) = a(1 + z)* ! and ¢"(z) = a(a — 1)(1 + 2)* 2, so that ¢"(x) > 0.
Hence ¢'(x) is increasing, and so f(z) is also increasing by Theorem 1.1. O

Theorem 3.1 can be extended to higher powers as follows (cf. [Mit, Theorem 5,
p. 35]).

3.2. Theorem. Let a > 1, and let n = [a] = the greatest integer < a. For each
m=0,1,2,...,(n—1), let f be defined on [—1,00) by

(1+z)* =30, Cla, k)*

f(gg) = pmtl fOT’ x ?é 0’

Cla,m+1) for z = 0.
Here C(a, k) denotes the binomial coefficient a(a — 1)(a —2)...(a — k+ 1)/k!, for
k= 0,1,2,.... Then f is strictly increasing. In particular, f(x) > f(0) for all

x € (0,00) and f(x) < f(0) for all € [-1,0).

Proof. The proof is by LMR and induction on n. First, for n = 1, we have m = 0,
and the result is precisely Theorem 3.1. Next, assume the result for all values < n
and prove it for n + 1 = [a]. Then m € {0,1,2,...,n}. If m = 0 the result again
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reduces to Theorem 3.1. Hence let m > 1, so that m —1 € {0,1,2,...,n — 1}and
n=la]—1=[a—1]. Now

(1+z)e >0 Cla, k)
f(flf) - xmilo

has the indeterminate form 0/0 at x = 0. The derivative ratio can be simplificd to

a (1+x) =3l Oa—1,k)z"
m+1 ™

which is increasing by the induction hypothesis. Further,

f(0) = ¢ C(a—1,m)=C(a,m+1).
m+1

b

3.3. Theorem. For a € (1,00) and x € (—1, 00), we have
(3.4) (1+2)*<1+ax(l+z)""

Proof. First let > 0. Then by the Mean Value Theorem there exists y € (0, )
with
(14+2)*—1)/z=a(l+y)* " <a(l+z)*!
So (3.4) follows, since z > 0.
Next, let x € (—1,0). Then, again by the Mean Value Theorem, there exists

z € (x,0), such that
1+a)*—1 :
—( + ) =a(l+2)"!>a(l+a)"",

so that again (3.4) follows, since z < 0. O

3.5. Theorem. (1) The function f(z) = (1 + )% is decreasing and the function
g(xz) = (14 1/x)* is increasing on (0,00), with range (1,e).

(2) The function F(x) = (14 2)™/% is increasing and G(x) = (1 + 1/2)77 is
decreasing on (0,00), with range (e, 00).

Proof. (1) Since g(z) = f(1/x), we need only prove the assertion for f(x). Now
log f(z) = (log(1 + x))/x, which has the indeterminate form 0/0 at x = 0. The
ratio of derivatives is 1/(1 + x), which is clearly decreasing on (0, 00), with limits 1
and 0 as x tends to 0 and oo, respectively. Hence the assertion follows by LMR.
(2) Since G(x) = F(1/x), we need only prove the assertion for F(z). Now
log F'(z) = [(1 + z) log(1 + )]/, which has the indeterminate form 0/0 at z = 0.
The ratio of derivatives is 1+ log(1 + z), which is clearly increasing on (0, 00), with
limits 1 and oo, as « tends to 0 and oo, respectively. Hence, again the assertion
follows from LMR. 0J
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3.6. Theorem. Forp>q>0,2>0, 2 #1,
-1 x27-1

> .

p q

Proof. Let f(x) = (a? —1)/(2? — 1) for x # 1, and let f(1) = p/q. Then f has
the indeterminate form 0/0 at = = 1, and by L’Hopital’s Rule it has limit p/q as z
tends to 1. The derivative ratio is (p/q)«?~¢, which is clearly an increasing function
of x on (0,00). Hence, by LMR, f is increasing on (0,00). Thus f(z) < f(1) on
(0,1) and f(z) > f(1) on (1,00). This yields the required result. O

(3.7)

3.8. Remark. Both sides of (3.7) are equal to 0 when z = 1.

4. COUNTEREXAMPLES

In this section we give some counterexamples to show the limitations of Theorem
1.1 and Corollary 1.3. First, the converse of Theorem 1.1 is false. Next, the ana-
logues of Theorem 1.1 and Corollary 1.3 for the infinite indeterminate form oo/oo
are false.

Example 1. Let f and g be defined on [0,1) by f(z) = arctanh(z) and g(z) =
1/(1 —z) and let F(z) = f(x)/g(x). Then F has the infinite indeterminate form
oo/oo at x = 1. However, F'is NOT monotone on (0, 1), since F(0) =0 = F(1-).
On the other hand, f'(x)/¢'(x) = (1 —x)/(1 + x), which is monotone decreasing on
[0,1).

Example 2. Let f(z) = x*sin(1/x), and let g(z) = sinz. Then the usual
I'Hopital Rule does not apply [St, p. 180]. In fact, as x — 0, lim f(x)/g(x) = 0,
while lim f'(z)/¢'(x) does not exist.

Example 3. Let f(z) = x [ (1 +sin(1/t))dt and g(x) = 2. Then f(x)/g(x) is
increasing on (0,00), while f'(x)/¢'(x) is not monotone on (0, 00).

Example 4. Let f(z) = 1/z — logz, g(x) = 1/x. Then f(x)/g(z) =1 — zlogx
and f'(x)/¢'(x) = 1 + x are both increasing on (0,1/e). On the other hand, if
f(z) =1/z, g(x) = cscx, then f(x)/g(x) = (sinz)/x is decreasing on (0,7/2), and
f'(x)/g'(x) = (sin®z)/(2? cosx) is increasing on (0,7/2). Note that in each case
f(x)/g(x) has the indeterminate form co/oc at z = 0.

Example 5. Let f(z) = coshz, g(x) = x. Then f(x)/g(x) has the indeterminate
form oo/oo at @ = oo. Clearly f'(x)/¢'(x) = sinh z is increasing on (0, 00), whereas
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f(z)/g(x) tends to oo as x tends either to 0 or to oo, so that f(x)/g(x) is not
monotone on (0, 00).
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