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Abstract. In this paper we prove that the product of a Baire space with a metrizable hered-
itarily Baire space is again a Baire space. This answers a recent question of J. Chaber and
R. Pol.
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A topological space X is called a Baire space if for each sequence (On : n ∈ N) of dense open
subsets of X,

⋂
n∈N On is dense in X and a Baire space Y is called barely Baire if there exists a

Baire space Z such that Y × Z is not Baire. It is well known that there exist metrizable barely
Baire spaces (see, [2]). On the other hand, it has recently been shown in [1] that the arbitrary
product of hereditarily Baire (i.e., each closed subspace of them is Baire) metrizable spaces is again
Baire. However, in this same paper the authors lament that they do not know whether there exists
a metrizable Baire space X and a metrizable hereditarily Baire space Y such that X × Y is not
Baire. In this paper we resolve this situation. Specifically, we show that if X is Baire and Y is
hereditarily Baire and metrizable then X × Y is also Baire. In order to simplify the appearance of
the proof of our main theorem we shall invoke the machinery of topological games. In particular,
we shall use the game characterisation of Baireness due to Saint Raymond, [3].

Let (X, τ) be a topological space. On X we consider the Choquet game GX played between two
players α and β. The player β goes first (always!) and chooses a non-empty open subset B1 ⊆ X.
Player α must then respond by choosing a non-empty open subset A1 ⊆ B1. Following this, player
β must select another non-empty open subset B2 ⊆ A1 ⊆ B1 and in turn player α must again
respond by selecting a non-empty open subset A2 ⊆ B2 ⊆ A1 ⊆ B1. Continuing this procedure
indefinitely the players α and β produce a sequence ((An, Bn) : n ∈ N) of pairs of open subsets
called a play of the GX -game. We shall declare that α wins a play ((An, Bn) : n ∈ N) of the
GX -game if,

⋂
n∈N An 6= ∅, otherwise the player β is said to have won. By a strategy t for the

player β we mean a “rule” that specifies each move of the player β in every possible situation that
can occur. More precisely, a strategy t := (tn : n ∈ N) for β is a sequence of τ -valued functions
such that ∅ 6= tn+1(A1, . . . An) ⊆ An for each n ∈ N. The domain of each function tn is precisely
the set of all finite sequences (A1, . . . An−1) of length n − 1 in τ \ {∅} with Aj ⊆ tj(A1, . . . Aj−1)
for all 1 ≤ j ≤ n − 1. (Note: the sequence of length 0 will be denoted by ∅.) Such a finite
sequence (A1, A2, . . . An−1) or infinite sequence (An : n ∈ N) is called a t-sequence. A strategy
t := (tn : n ∈ N) for the player β is called a winning strategy if each infinite t-sequence is won by β.

Theorem 1 [3] Let X be a topological space. Then X is a Baire space if, and only if, β does not
have a winning strategy in the Choquet game played on X.

The following result is proved by a straight-forward induction (on the number of elements of Z)
argument.
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Lemma 1 Let X be a topological space, (Y, d) be a metric space and O be a dense open subset of
X ×Y . Then given any finite subset Z of Y , ε > 0 and non-empty open subset U of X there exists
a finite subset Y ′ of Y and a non-empty open subset V of U such that V × Y ′ ⊆ O and for each
z ∈ Z there exists a y ∈ Y ′ such that d(y, z) < ε.

Theorem 2 Let X be a Baire space and (Y, d) be a hereditarily Baire metric space. Then X × Y
is a Baire space.

Proof: Let (On : n ∈ N) be a decreasing sequence of dense open subsets of X × Y . We need to
show that

⋂
n∈N On is dense in X × Y . To this end, let U be a non-empty open subset of X and

V be a non-empty open subset of Y ; we will show that (
⋂

n∈N On) ∩ (U × V ) 6= ∅. To achieve
this we will appeal to the game characterisation of Baireness given in Theorem 1. Thus, we shall
inductively define a (necessarily non-winning) strategy t := (tn : n ∈ N) for the player β in the
Choquet game played on X.

Step 1. Choose y ∈ V and a non-empty open subset U∅ ⊆ U such that U∅ × {y} ⊆ O1. Note this
choice is possible since (U × V ) ∩O1 6= ∅. Let Y∅ := {y}, Z∅ := Y∅ and define t1(∅) := U∅.

Step 2. For each t-sequence (A1) of length 1 we can apply Lemma 1 to get a finite subset Y(A1) of
V and a non-empty open subset U(A1) of A1 so that:

(i) for each z ∈ Z∅ there exists a y ∈ Y(A1) such that d(y, z) < 1/2;

(ii) U(A1) × Y(A1) ⊆ O2.

Then we define

(iii) Z(A1) := Z∅ ∪ Y(A1);

(iv) t2(A1) := U(A1).

Now suppose that the finite subsets Y(A1,...Aj), Z(A1,...Aj) of V , the non-empty open subset U(A1,...Aj)

of Aj and the strategy tj+1 have been defined for each t-sequence (A1, . . . Aj) of length j, 1 ≤ j ≤
(n− 1) so that:

(i) for each z ∈ Z(A1,...Aj−1) there exists a y ∈ Y(A1,...Aj) such that d(y, z) < 1/(j + 1);

(ii) U(A1,...Aj) × Y(A1,...Aj) ⊆ Oj+1;

(iii) Z(A1,...Aj) := Z(A1,...Aj−1) ∪ Y(A1,...Aj);

(iv) tj+1(A1, . . . Aj) := U(A1,...Aj).

Step (n + 1). For each t-sequence (A1, . . . An) of length n we can apply Lemma 1 to get a finite
subset Y(A1,...An) of V and a non-empty open subset U(A1,...An) of An so that:

(i) for each z ∈ Z(A1,...An−1) there exists a y ∈ Y(A1,...An) such that d(y, z) < 1/(n + 1);

(ii) U(A1,...An) × Y(A1,...An) ⊆ On+1.

Then we define

(iii) Z(A1,...An) := Z(A1,...An−1) ∪ Y(A1,...An) ;

(iv) tn+1(A1, . . . An) := U(A1,...An).
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This completes the definition of t := (tn : n ∈ N). Now since X is a Baire space t is not a winning
strategy for the player β in the GX -game. Therefore there exists a t-sequence (An : n ∈ N) where⋂

n∈N An 6= ∅ (i.e., α wins). Choose x ∈
⋂

n∈N An and define, for each n ∈ N, the open sets
(Wn : n ∈ N) so that {x} × Wn := ({x} × Y ) ∩ On. Let Z :=

⋃
{Z(A1,...An−1) : n ∈ N} ⊆ V .

Then Z is a Baire space and by construction Wn ∩ Z is dense in Z for each n ∈ N. Indeed, if
z ∈ Z, n ∈ N and ε > 0 then we can choose k ∈ N sufficiently large so that n < k, 1/k < ε
and z ∈ Z(A1,...Ak−1). Then there exists a y ∈ Y(A1,...Ak) such that d(y, z) < 1/(k + 1) < ε and
(x, y) ∈ Ok+1 ∩ ({x} × Y ), which implies that y ∈ Wk+1 ⊆ Wn. Thus, y ∈ B(z, ε) ∩ (Wn ∩ Z) 6= ∅.
Next, choose y ∈

⋂
n∈N Wn ∩ V ∩ Z, then (x, y) ∈ (

⋂
n∈N On) ∩ (U × V ) 6= ∅; which completes the

proof. k��
Remark In the previous theorem it is possible to weaken the hypothesis on Y while not affecting
the conclusion (i.e., that X×Y is Baire). For example, if Y is hereditarily Baire and first countable
then it is not difficult to see how to modify the proof in order to retain the same conclusion. If
one is willing invest a bit more effort then it can be shown that if Y is expressible as a product of
hereditarily Baire metric spaces then X × Y is Baire, despite the fact, that in this particular case,
Y is not necessarily obliged to be hereditarily Baire (see [1] for the idea behind this).
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