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Summary: In this paper we show that lobbying in conditions of “direct democ-
racy” is virtually impossible, even in conditions of complete information about
voters preferences, since it would require solving a very computationally hard
problem. We use the apparatus of parametrized complexity for this purpose.
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1 Direct and Representative Democracy

Countrywide votes on a specific issue are an accepted way of resolving po-
litical issues in many countries around the world. Such votes are usually termed
”referenda.” A referendum gives the people the chance to vote directly on a specific
issue. Although people can also make choices at general elections, these elections
are usually fought on a number of issues and often no clear verdict on any one
issue is delivered. So instead of voting for only representatives, referenda allow
citizens to vote directly on some federal matters. In Switzerland and California,
for example, referenda are very common.

It is a commonplace that an ideal democratic political system should combine
both referenda and representative government. A key issue is the relative weight-
ings of these two ingredients. Referenda are costly. However, in the fully com-
puterized society, to which we are gradually moving, referenda could be cheap
and fast. Hence the relative weightings of the two ingredients may be expected to
change.
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Another development that might drive this change is the relative simplicity of
lobbying such legislative bodies as the American Congress and House of Repre-
sentatives. In his book, Phillips observes that Washington has become increasingly
dominated by an interest-group elite which is now so deeply entrenched and so re-
sistant to change that the proper functioning of government is impossible [15]. He
suggests that representative democracy be restored to Athenian direct democracy
through the use of referenda.

In this paper we show that lobbying in conditions of “direct democracy” is
computationally virtually impossible, even in conditions of complete information
about voters’ preferences. We use the apparatus of parametrized complexity for
this purpose. We envision that computational complexity may play a positive role
in voting, protecting the integrity of social choice. Such a role would resemble the
situation in public-key cryptography [7] where computational complexity protects
the privacy of communication. As far as we know, this is the first paper which
considers applications of parametrized complexity to social choice. Previously,
complexity issues in social choice were considered in [1–6,9–11,13,14].

2 Parametrized Complexity

For those not familiar with computational complexity, we provide a quick
sketch of concepts and terminology. The reader should consult [8,12] for more
details.

The standard paradigm of complexity theory is embodied in the contrast be-
tween P and NP problems. Problems in P are those which admit an algorithm
that, given any input x of size n, produces the output Output(x) required by the
problem specification in time O(nα), that is in time bounded by Cnα, where α
and C are constants. The notation P designates the class of problems solvable in
polynomial time. Such algorithms are generally considered to be tractable. NP de-
notes the class of non-deterministic polynomial time solvable problems. For such
problems, for each input x, there is a polynomial time algorithm that justifies that
Output(x) is indeed the output required by the specifications of the problem. NP
contains P and it is believed that P �= NP . The hardest problems in NP are
called NP -complete. They are all equivalent in a sense that any such problem can
be reduced to an instance of any other NP -complete problem and such reduction
can be made in polynomial time. So, if one NP -complete problem can be solved
in polynomial time, then all of them can be solved in this way and it would fol-
low that NP = P . NP -completeness is therefore taken as evidence of inherent
intractability.

However, in reality we are often interested in the tractability of problems when
values of a certain parameter k (representing some aspect of the input) are small. In
this case we need to undertake the parametrized comlexity analysis as developed
by Downey and Fellows in [8]. A problem is said to be in the class FPT (Fixed
Parameter Tractable) if there exists an algorithm solving the problem and running
in time f(k)nc, where c is a fixed constant and f is an arbitrary computable func-
tion. If our problem belongs to this class, then it is tractable for small values of
k. Unlike the P versus NP paradigm, here we obtain a hierarchy of parametrized
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complexity classes

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ . . .

(see [8] for exact definition of these classes). Being W [2]-complete is considered
strong evidence that the problem is not tractable even for small values of the pa-
rameter. Two W [2]-complete problems that will be important later in this paper
are described below.

Given a graph G = (V, E) with a set of vertices V and the set of edges E, we
say that a subset of the set of vertices V ′ ⊆ V is a dominating set if every vertex
in V is adjacent to at least one vertex in V ′. If V ′ is dominating and consists of k
vertices we will say that it is a k-dominating set. The set V ′ is called independent
if no two vertices of V ′ are adjacent. The picture below shows a 3-dominating set
which is not independent and an independent 4-dominating set.
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3-dominating set
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Independent 4-dominating set

The k-DOMINATING SET problem takes as input a graph G and a positive
integer k, which is considered as parameter. The question asks whether there ex-
ists a k-dominating set in G. The k-DOMINATING SET problem has been shown
to be W [2]-complete by Downey and Fellows (1999). They consider that “k-
DOMINATING SET problem represents some fundamental “wall of intractability”
where there is no significant alternative to trying all k-subsets for solving the prob-
lem.” [8], p.15.

The INDEPENDENT k-DOMINATING SET problem is also W [2]-complete. The
input is the same as for the k-DOMINATING SET, and the question asks whether
G has an independent dominating set of size k.

3 Lobbying on a Restricted Budget

We consider the problem faced by an actor that wishes to influence the vote of
a certain legislative body or a referendum on a number of issues by trying to exert
influence on particular agents. We will refer to this actor as “The Lobby”. It is
assumed that The Lobby has complete information about agents’ preferences. The
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Lobby has a fixed budget and has to be selective in choosing agents to distribute the
limited budget among them. It is reasonable to assume that the number of agents k
that can realistically be influenced is relatively small, and hence this aspect of the
input is appropriate as a parameter for the complexity analysis. Hence the use of
parametrized complexity developed by Downey and Fellows (1999) is completely
appropriate for this problem. This is the first time that parametrized complexity is
used in application to social choice studies. Our formal model of the problem is as
follows:

The problem: OPTIMAL LOBBYING (OL)

Instance: An n by m 0/1 matrix E , a positive integer k, and a length m 0/1
vector x. (Each row of E represents an agents. Each column represents a
referendum in the election or a certain issue to be voted on by the legislative
body. The 0/1 values in a given row represent the natural inclination of the
agent with respect to the referendum questions put to a vote in the election.
The vector x represents the outcomes preferred by The Lobby.)

Parameter: k (representing the number of agents to be influenced)

Question: Is there a choice of k rows of the matrix, such that these rows
can be edited so that in each column of the resulting matrix, a majority vote
in that column yields the outcome targeted by The Lobby?

Proposition 1 OPTIMAL LOBBYING is W [2]-hard.

Proof One of the standard techniques of proving a problem is W [2]-hard is to
reduce a problem that is already known to be W [2]-hard to our problem. We
reduce from the W [2]-complete k-DOMINATING SET problem. Given a graph
G = (V, E), and a positive integer k for which we wish to determine whether
G has a k-element dominating set, we produce the following set of inputs to the
OPTIMAL LOBBYING problem. (We will assume that the number of vertices n is
odd, and that the minimum degree of G is at least k, since k-DOMINATING SET

remains W [2]-complete under these restrictions.)

– The 0/1 matrix E consists of two sets of rows, the top set, indexed by V =
{1, ..., n}, and the bottom set, consisting of n − 2k + 1 additional rows. The
matrix E has n + 1 columns, with the first column being the template column,
and the remaining n columns indexed by V .

– The template column has 0’s in all of the top set row entries, and 1’s in all of
the bottom set row entries.

– A column indexed by a vertex v, in the top row positions, has 0’s in those rows
that are indexed by vertices u ∈ N [v]. In the bottom row positions, the entries
can be computed by first setting all of these entries to 1, and then changing
(arbitrarily) n− k− |N [v]|+1 of these entries to 0. (This insures that in every
column indexed by a vertex the total number of 0’s is one more than the total
number of 1’s.)

– The vector x = (1, 1, . . . , 1) of length n + 1 has a 1 in each position.
– The parameter k remains the same.
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We claim that this is a yes-instance of OL if and only if G has a k-dominating set.
One direction is easy. If G has a k-dominating set, then The Lobby corrupts the

corresponding agents, or formally, we edit the corresponding rows. With respect
to the first (template) column, we thus have the opportunity to change k of the 0’s
to 1’s. Since in the first column, initially, the “1” outcome was losing by 2k − 1
votes, and since each of these k edit operations decreases the difference by 2 (as
there is one more 1 and one less 0), the outcome in the first (template) column is
a victory for the “1” outcome, by 1. Since the chosen rows for editing represent a
dominating set in G, we are similarly able to advantage each vertex column contest
by at least 2, and since each of these was losing by one vote, we are able to secure
majorities of 1 in every column.

Conversely, suppose the described instance of OL has a solution. Necessarily,
the rows chosen to be edited must be in the top set of rows (indexed by vertices
of G), since otherwise obtaining a majority of 1’s in the first column will not be
possible. Any solution that consists of rows in the top set of rows must therefore
provide at least one opportunity, for each vertex column (indexed by v), of editing
in a row that is indexed by a vertex u ∈ N [v]. Thus, any such solution corresponds
to a k-dominating set in G.

Proposition 2 OPTIMAL LOBBYING (OL) is in W [2].

Proof One of the standard techniques of proving that a problem is in the class
W [2] is to reduce our problem to another problem which is already known to be
in W [2]. We reduce to the W [2]-complete INDEPENDENT k-DOMINATING SET

problem [8], page 464. Given an n by m 0/1 matrix E = (eij), a positive integer
k, and a length m 0/1 vector x, proceed as follows:

1. Calculate w = �n/2� + 1, which is the number of votes required to pass any
particular referendum question.

2. For 1 ≤ j ≤ m, let

δ(j) =
{

max(0, w −
∑

i eij), xj = 1,
max(0,

∑
i eij − w + 1), xj = 0.

3. Since δ(j) is the number of votes that The Lobby is away from the desired
outcome in the jth referendum, when δ(j) > k, for at least one j, we have a
trivial negative instance.

4. For each J = 1, . . . , m, let Cj = {i | eij �= xj , 1 ≤ i ≤ n}. Then Cj is
the set of voters who are naturally inclined to vote against the interests of The
Lobby in the jth referendum.

An OL solution of size k will be any set K ⊆ {1, . . . , n} such that the cardinality
of K is k and |K ∩ Cj | ≥ δ(j) for every j = 1, . . . , m.

Let us construct the graph G as specified below. The vertex set of G consists
of the following vertices:

– xab is a vertex, for 1 ≤ a ≤ k, 1 ≤ b ≤ n.
– xa∞ is a vertex, for 1 ≤ a ≤ k.
– ycd is a vertex, for 1 ≤ c ≤ m, 1 ≤ d ≤

(
k

k−δ(c)+1

)
.
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The edges of G are as follows:

– For every 1 ≤ a ≤ k, the subgraph induced on {xab | 1 ≤ b ≤ n or b = ∞} is
complete.

– For every 1 ≤ b ≤ n (but not b = ∞) the subgraph induced on {xab |
1 ≤ a ≤ k} is complete.

– For every 1 ≤ c ≤ m, let fc be a bijection from {1, 2, . . . ,
(

k
k−δ(c)+1

)
to the

set of all subsets of {1, . . . , k} of cardinality k− δ(c) + 1. Then the vertex ycd

is connected by an edge to each member of {xab | a ∈ fc(d), b ∈ Cc}.

We will show now that G has a k-Independent Dominating Set S if and only if
(E , k, x) is a positive instance of OL. First, assume that G has a k-Independent
Dominating Set S. Then each xa∞ is dominated, and, since it is connected only
to vertices xab, where 1 ≤ b ≤ n, at least one vertex xab must be in S for each
1 ≤ a ≤ k.As S is of size k, it includes exactly one of the xab for each a. As S is
independent, it cannot include xsb and xtb for s �= t.

Now, let K = {b | xab ∈ S for some a}. The cardinality of K is k, so, if
|K ∩ Cj | ≥ δ(j) for every j, then K is an OL solution of size k.

For every j, consider the set Yj = {yjd | 1 ≤ d ≤
(

k
k−δ(j)+1

)
}. Since each

of these vertices is dominated, some member of {xab | a ∈ fj(d), b ∈ Cj} is in
S for each d. Since fj(d) ranges over all subsets of {1, . . . , k} of cardinality k, at
least δ(j) members of {xab | a ∈ {1, . . . , k}, b ∈ Cj} are in S and therefore at
least δ(j) members of Cj are in K. Thus K is an OL solution.

Conversely, imagine that K is an OL solution of size k. Choose an arbitrary
enumeration θ of elements of K and denote S = {xiθ(i) | 1 ≤ i ≤ k}. S is inde-
pendent, because there is no edge between xiθ(i) and xjθ(j) unless i = j. Since
i ranges over 1, . . . , k, each vertex xab is dominated. Since K is an OL solution,
for each j at least δ(j) members of Cj are in K. Thus, by the construction of S,
at least δ(j) members of {xab | a ∈ {1, . . . , k}, b ∈ Cj} are in S, so that some
member of {xab | a ∈ fj(d), b ∈ Cj} is in S for each d, and yjd is dominated for
each j and each d. Thus S is an Independent Dominating Set of size k.

Together, the two propositions above give the following complete classification
of the parametrized complexity of the problem.

Theorem 1 OPTIMAL LOBBYING is W [2]-complete.

4 Conclusion

This paper shows that parameterized complexity is a very appropriate tool for
analyzing the computational difficulty of problems in social choice. We believe
that the methods of parameterized complexity will be especially useful when deal-
ing with problems regarding voting. Indeed, any voting situation stipulates the
existence of two parameters: the number of voters n and the number of alterna-
tives m. The sizes of these two parameters are very different. While the number
of voters can be, and usually is, very large, the number of alternatives is small,
seldom exceeding 20. Hence, the contribution of the relatively small number of
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alternatives to the complexity of the problem is limited, and this should be re-
flected in the method of investigation. We believe the best way to do so is to use
the conceptual framework of parameterized complexity.

Some 15 years ago, Bartholdi, Tovey and Trick [1] pioneered the study of vot-
ing procedures from the viewpoint of complexity theory. In particular, they proved
that DODGSON SCORE and KEMENY SCORE are NP-complete and DODGSON

WINNER and KEMENY WINNER are NP-hard. The latter two problems were proved
to be complete for parallel access to NP [13,14]. The problems KEMENY SCORE

and KEMENY WINNER are Fixed Parameter Tractable. However, the parametrized
complexity of DODGSON SCORE and DODGSON WINNER remains open.
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