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Abstract

We give a new proof of the classical Erdös theorem on the existence
of graphs with arbitrarily high chromatic number and girth. Rather
than considering random graphs where the edges are chosen with some
carefully adjusted probability, we use a simple counting argument on
a set of graphs with bounded vertex degree.

1 Introduction

In 1959 Erdös [3], in a landmark paper, proved the existence of graphs with
arbitrarily large chromatic number χ(G) and girth g. The central idea of
Erdös’ proof was as follows: we consider random graphs on n vertices where
edges occur with some probability p. If p is small the graph will have few
short cycles, and if p is large the graph will have no large independent sets.
The right choice of p ensures that both happen at the same time in such a
way that deleting a vertex from each short cycle leaves the graph with a low
independence number, and hence high chromatic number. This technique
has been extended in a number of ways, to uniquely k-colourable graphs
by Bollobas and Sauer [1], and also to k-critical graphs. In the case of
uniquely k-colorable graphs, it has been shown by Emden-Weinert, Hougardy
and Kreuter [2] that such graphs exist satisfying order and maximal degree
bounds of k12(g+1) and 5k13 respectively, and given a randomised algorithm
which which outputs such a graph with probability 1

2
.

Another variation on the problem has been the replacement of the chro-
matic number χ(G) with the star chromatic number χ∗(G). This is defined
as the infimum of the ratios m

d
for which G can be coloured with m colours

in such a way that adjacent vertices have colours with m-circular distance at
least d. (the m-circular distance of colours a, b with a− b ∈ {0, 1, . . . ,m−1}
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is the minimum of a − b and m − a + b.) Work of Steffen and Zhu [7, 8]
has shown that there are graphs with arbitrarily high girth and any rational
χ∗(G).

A number of constructive techniques have also been developed in work
on this problem. Perhaps the most remarkable is due to Müller [5], who has
proven the following. Let natural numbers k and g and a set A are given,
and P1, . . . , Pr be distinct partitions of A into at most k classes. Then there
exists a k-chromatic graph of girth greater than g with A as a subset of its
vertex set such that each Pi may be extended to a colouring of G, and these
are the only possible colourings. It also follows from the work of Greenwell
and Lovàsz [4] on colouring direct products of graphs that there exist graphs
with χ(G) = k and odd girth at least g for any k and g. The results of Müller,
and Greenwell and Lovàsz, have been extended to star colourings and star
chromatic number by Nes̆etr̆il and Zhu [6]. The result we prove here is not
new, rather it is the well known Erdös’s

Theorem For any g and k, there exists a graph of girth at least g which
is not k-colourable.

However we feel that the idea of the proof, which is just a simple counting
argument on on a set of graphs with bounded vertex degrees, is sufficiently
interesting to warrant attention.

2 A New Proof

For some n and d, denote by Γ the set of graphs on n vertices with at most nd
edges and degree at most d2, and whose girth is at least g. Similarly, denote
by Ψ the set of graphs on n vertices with at most nd edges and degree at
most d2 which are k colourable. In both Γ and Ψ we consider the edges and
vertices of our graphs to be ordered. Let Γm and Ψm be the subsets of Γ and
Ψ consisting of graphs with exactly m edges.

The idea of the proof is as follows: because the degree of our graphs is
bounded, the requirement that the girth is at least g becomes a local condi-
tion. By this we mean that if we go about constructing graphs in Γ by suces-
sively adding edges, only a bounded number of choices (as a function of n) are
excluded at each step. On the other hand, a given vertex colouring excludes
some constant proportion of the edges we may use in our graphs. Therefore
for n sufficiently large the k-colourabilty requirement excludes more graphs
than the girth requirement and we will have |Γnd| > |Ψnd|, i.e. there is a
graph in our class which has girth at least g but is not k-colourable.

We begin by estimating |Ψm| from above. Given a colouring C in which
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the number of vertices with colour i is denoted ni, by Turàn’s theorem the
set of allowed edges EC has maximal cardinality when all ni are as close to
being equal as possible, i.e.

|EC | ≤
(

n

2

)
− k

(
n/k

2

)
|EC | ≤ 1

2
n2(1− 1

k
)

Therefore for each m

|Ψm| ≤
1

2
n2(1− 1

k
)|Ψm−1|.

Also, |Ψ0| = kn as there are this many initial vertex colourings. It then
follows inductively that

|Ψm| ≤ kn(
1

2
n2(1− 1

k
))m

We now recursively estimate |Γm| from below, by adding an edge to graphs
in Γm−1 and giving a lower bound on the proportion of the resulting graphs
which are valid. At each step we have no more than nd edges in our graph,
which means there exist at most 2n

d
vertices which will exceed the degree

bound of d2 if we add another edge to them. Therefore there are at least
n(1 − 2

d
) vertices between which we may add an edge at each step of our

graph construction. In order to ensure we do not create a cycle of length g
or shorter when we add an edge, the edge may not end at any vertex within
distance g of the initial vertex. Because all vertices have degree at most d2,
this excludes no more than d2 + d4 + . . . + d2g ≤ gd2g choices. We then have
at least

1

2
n(1− 2

d
)(n(1− 2

d
)− gd2g)

choices at each step of our construction, giving us the estimate

|Γm| ≥ (
1

2
n(1− 2

d
)(n(1− 2

d
)− gd2g))m.

Suppose now that the desired inequality fails, i.e. that

(
1

2
n(1− 2

d
)(n(1− 2

d
)− gd2g))nd ≤ (kn 1

2
n2(1− 1

k
))nd

or
1

2
n(1− 2

d
)(n(1− 2

d
)− gd2g) ≤ k

1
d
1

2
n2(1− 1

k
)
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for all n and d. Then the coefficient of n2 on the left hand side must be less
than or equal to the coefficient on the right hand side, so

(1− 2

d
)2 ≤ k

1
d (1− 1

k
)

for all d. However, as d →∞ the right hand side approaches 1− 1
k

while the
left hand side approaches 1. Therefore for some n and d we have |Γnd| > |Ψnd|,
so there exists a graph with girth at least g which is not k-colourable. It may
also be shown that a choice of d = k3, n = 9gk6g+1 suffices for all k ≥ 3,
while d = k2, n = 2gk4g+1 suffices for k ≥ 144.
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