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1 Introduction

A comparative probability ordering on a finite set X of cardinality n is an
order1 on the power set 2X satisfying the following de Finetti’s axiom [4]: for
any A, B, C ⊆ X

A � B ⇐⇒ A ∪ C � B ∪ C whenever (A ∪B) ∩ C = ∅.

The set X is normally assumed to be {1, 2, . . . , n}.
Comparative probability orderings are normally studied in terms of com-

binatorial objects associated with them called discrete cones [1, 2, 3]. We
may represent a subset A ⊆ X by an n-dimensional characteristic vector vA

whose ith coordinate is 1 if i ∈ A and 0 otherwise. Likewise the comparison
A � B can be represented by the vector vA−vB whose coordinates will now
lie in the set T = {−1, 0, 1}. In this way we may think of comparative prob-
ability orderings as subsets of T n by converting all comparisons to vectors,
with de Finetti’s axiom ensuring that this correspondence is well defined.
The resulting objects, called discrete cones, proved to be a convenient tool
for the study of comparative probability orderings.

Definition 1. A subset C of T n is a discrete cone if:

(i) if x ∈ C and y ∈ C then x + y ∈ C provided x + y ∈ T n;

(ii) for x ∈ T n, either x ∈ C or −x ∈ C (not both for x 6= 0);

(iii) {e1 − e2, . . . , en−1 − en, en} ⊆ C, where {e1, . . . , en} is the standard
basis of Rn

We define a discrete cone to be almost representable if there is a vector
n with strictly positive, distinct entries such that x ∈ C =⇒ x · n ≥ 0,
and representable if, in addition, x · n = 0 ⇐⇒ x = 0. These two conditions
correspond to the existence of a probability measure on X which almost agree
or, respectively, agree with the comparative probability ordering to which the
cone corresponds [5].

A central question in the study of comparative probability orderings is
what conditions are required to ensure that such an ordering is representable.
Conditions which are known to be necessary and sufficient are the so-called
cancellation conditions C1, . . . , Ck, . . . developed by Kraft, Pratt and Sieden-
berg [5]. A discrete cone C (and the corresponding comparative probability

1any reflexive, complete and transitive binary relation
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ordering) satisfies the mth cancellation condition Cm if there are no m vectors
x1, . . .xm ∈ C and positive integers a1, . . . am such that

m∑
i=1

aixi = 0.

It is clear that any representable cone satisfies all cancellation conditions.
As conditions C1, C2, C3 are satisfied by any comparative probability or-

dering [2], Fishburn [2, 3] defined a function f(n) as the smallest number
k such that the cancellation conditions C4, . . . , Ck ensure that a probability
ordering on a n element set is representable. Conder and Slinko [1] intro-
duced a similar function g(n) which is the smallest number k such that the
cancellation conditions C4, . . . , Ck ensure that an almost representable or-
der is representable. It is clear that g(n) ≤ f(n) and it is easy to show that
f(n) ≤ n+1 and g(n) ≤ n. Fishburn proved that f(5) = 4 and f(n) ≥ n−1.
He conjectured that f(n) = n − 1 for all n ≥ 5. Conder and Slinko [1] con-
firmed it for n=6 proving that f(6) = g(6) = 5, however they disproved the
hypothesis for n = 7 by showing that f(7) ≥ g(7) = 7.

Definition 2. We will call a discrete cone C in T n (and the respective com-
parative probability ordering) extremal if C satisfies the cancellation condi-
tions C1, . . . , Cn−1 but is not representable.

Thus we may say that Conder and Slinko constructed the first extremal
almost representable cone in T 7. The goal of this article is to prove f(n) ≥
g(n) = n, when n is a prime satisfying a certain condition. More exactly, we
prove

Theorem 1. Let p be a prime greater than 131. If(
1 +

√(
−1

p

)
p

)p

− 1 = a + b

√(
−1

p

)
p, (1)

where gcd(a, b) = p, then there exists an extremal almost representable disrete
cone in T p and, in particular, g(p) = p.

The odd primes satisfying (1) we will call regular because our observations
show that the majority of primes satisfy this condition. The first few non-
regular primes are

3, 23, 31, 137, 191, 239, 277, 359, . . . .

Our calculations show that 1725 of the 1842 primes between 132 and 16000
are regular primes and Theorem 1 is true for them. At this point, however,
we know nothing about the general distribution of such primes, or even if
there are an infinite number of them.
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2 The Discrete Cones and Matrices

The idea behind all constructions of almost representable but not repre-
sentable cones is as follows. We choose a probability measure p = (p1, . . . , pn)
on [n] with all pi’s positive and distinct such that the corresponding ordering
of subsets in P [n] is not strict and some subsets are tied having equal prob-
abilities. Then we break ties in a coordinated way and with some luck we
may get a comparative probability ordering which is not representable. In
the language of cones, a tie means having a pair of vectors ±x in the cone,
and breaking it means throwing one of them away.

Example 1. The non-representable comparative probability ordering � on
P [5] constructed in [5] does not satisfy the condition C4 since it contains the
following comparisons:

{1, 3} � {2, 4, 5}, {2, 4} � {1, 5}, {2, 5} � {3, 4}, {4, 5} � {2}. (2)

These are contradictory which is reflected in the relation x1+x2+x3+x4 = 0
for their respective vectors

x1 = (1,−1, 1,−1,−1)T ,

x2 = (−1, 1, 0, 1,−1)T ,

x3 = (0, 1,−1,−1, 1)T ,

x4 = (0,−1, 0, 1, 1)T .

This can be obtained from a representable but nonstrict comparative proba-
bility ordering with the measure p = 1

24
(8, 7, 4, 3, 2) for which all pairs in (2)

are tied.

Conder and Slinko [1] in the following theorem clarified the conditions
under which such construction would work (in their construction we replaced
rows with columns).

Theorem 2 (Conder-Slinko, [1]). Let X = {x1, . . . ,xm}, m ≥ 4, be
a system of non-zero vectors from T n, such that

∑m
i=1 aixi = 0 for some

positive integers a1, . . . , am, and such that no proper subsystem X ′ ⊂ X is
linearly dependent with positive coefficients. Suppose further that the n×m
matrix U having the vectors x1, . . . ,xm as its columns has the property that
pU = 0 for some positive integer-valued vector p = (p1, . . . , pn) with p1 >
p2 > . . . > pn > 0, with

∑n
i=1 pi = 1, and that

span{x1, . . . ,xm} ∩ T n = {±x1, . . . ,±xm}. (3)
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Let C(�) be the discrete cone belonging to the weak comparative probability
ordering which arises from the measure p, that is, C(�) = {x ∈ T n | p · x ≥
0}. Then the discrete cone

C ′ = C(�) \ {−x1, . . . ,−xm}

corresponds to an almost representable comparative probability ordering which
almost agrees with p, and satisfies Ci for all i < m, but does not satisfy Cm.

It should be noted that the condition (3) is most demanding and very
difficult to achieve.

For our construction of extremal cones we will use the above theorem.
We will construct a p × p matrix U with columns u1, . . . ,up which has the
following properties:

(i) The only dependence between the columns ui is
∑p

i=1 ui = 0.

(ii) The only vectors in col(U) ∩ T p are ±ui.

(iii) None of the u’s is of the form ei or ±ei ± ej, for i 6= j.

We claim that the conditions of the Theorem 2 will then be possible
to satisfy. Indeed, the only thing to check is the existence of a positive
integer-valued vector p with the property pU = 0. Since U has rank p − 1
such vector p satisfying pU = 0 is unique up to a scalar multiple and has
rational co-ordinates. From the conditions on columns of U we know that
neither ei nor ±ei ± ej belongs to Col(U). This implies that pi 6= 0 and
|pi| 6= |pj| for all i 6= j. If one or more co-ordinates of p are negative, we
change U multiplying the respective rows by −1. We then know that all
co-ordinates of p are distinct, so by permuting the rows of U we may assume
that p1 > p2 > . . . > pn > 0. At last p can be normalised so that

∑n
i=1 pi = 1.

Summarising we state

Theorem 3. If a p × p matrix U satisfying properties (i)–(iii) exists, then
there exists an extremal discrete cone in T p.

3 The Construction of U

Our construction is based on the distribution of quadratic residues modulo
a prime p > 3. We use the Legendre quadratic residue symbol ( i

p
), i =
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0, 1, 2, . . . , p − 1, where for convenience we take (0
p
) to be 0. The idea is to

alter the vector of quadratic residue symbols

r =

(
0,

(
1

p

)
,

(
2

p

)
, . . . ,

(
p− 1

p

))T

in the first two co-ordinates as follows

q =

(
1,

(
1

p

)
− 1,

(
2

p

)
, . . . ,

(
p− 1

p

))T

,

and then form a circulant matrix

Q =
[
q, Sq, S2q, . . . , Sp−1q

]
from q, where S is the standard matrix of the circular shift operator which
translates all coordinates one place down, with the last co-ordinate being
placed at the top. The quadratic residue nature of these vectors means
that 1’s and −1’s are evenly distributed, making it hard for any nontrivial
linear combination to have co-ordinates all from T , while at the same time
the matrix still has enough structure that we may effectively prove that the
desired conditions hold.

Further we will also need the matrix

R =
[
r, Sr, S2r, . . . , Sp−1r

]
,

and we note that Q = R + I − S, where I is the identity matrix.
Now finally we form U from Q by subtracting 1 from q11 and adding 1

to q1p, and denote its columns by u1, . . . ,up. We note that ui ∈ T p for all
i = 1, 2, . . . , p. Here is an example of such construction for p = 5:

U =


0 1 −1 −1 1
0 1 1 −1 −1

−1 0 1 1 −1
−1 −1 0 1 1

1 −1 −1 0 1

 .

Let us define the integer span of the columns of U as follows:

intspan{u1, . . . ,up} =

{
p∑

i=1

niui | ni ∈ Z

}
.

We will now prove that U satisfies properties (i)-(iii). We wish to split
the proof of (ii) into two smaller statements, the first that the only integer
vectors in col(U) ∩ T p are those of the form

∑p
i=1 niui with ni ∈ Z, and the

second that there are no vectors of this form in T p. They will be proved in
the following two lemmata.
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Lemma 1. col(U) ∩ T p = intspan{u1, . . . ,up}.

Proof. We will make use here of the canonical homomorphism

φ : Z −→ Zq = Z/qZ,

where q is a prime, and denote the image of a under φ by a. This mapping
can be extended in an obvious way to a mapping of integer vectors, or integer
matrices, and the image of a vector u or matrix M under this mapping will
be similarly denoted u or M , respectively.

Assuming the contrary to the lemma, there must be some ai, bi ∈ Z,
i = 1, 2, . . . , p such that

p∑
i=1

ai

bi

ui ∈ T p and u =

p∑
i=1

ai

bi

ui 6∈ intspan{u1, . . . ,up} (4)

Since u1 + . . . + up = 0 we may always obtain a relation (4) with ai = 0 for
an arbitrary i. It is clear that u 6= 0 and after representing u in the form

u =

p∑
i=1

ni

n
ui

where gcd(n1, . . . , np) is relatively prime to n, we may assume that it is not
true that n1 = . . . = np (otherwise u = 0). As n ≥ 1, let q be any prime
divisor of n. Then

p∑
i=1

niui ∈ qZp

where at least one ni is not divisible by q due to the relative primeness of
gcd(n1, . . . , np) to n. Hence

p∑
i=1

niui = 0,

and such relations may be obtained with ni = 0 for arbitrary i. Therefore
any p− 1 element subset of {u1, . . . ,up} must have a linear dependency. As
a result, the determinant of any principal minor of U is 0, or equivalently the
determinant of any principal minor of U is divisivle by q.

Because the rows and columns of Q add to the zero vector, all principal
minors of this matrix must have determinant ±D for some D. If q is a prime
dividing the determinants of all principal minors of U , it must also divide
D as Q and U share some principal minors. The determinant of the (i, 1)st
principal minor of U will be the determinant of the corresponding principal
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minor of Q plus the determinant of the matrix Vi obtained by removing from
Q rows 1 and i, and columns 1 and p. This implies that q divides det(Vi) for
all i. Therefore Q must have nullity 2, and because the sum of the rows of
Q is 0 it will also have a set of p− 2 dependent columns. We will now show
that this leads to a contradiction.

To show that Q has no p − 2 columns with a dependency modulo any
prime dividing D, let us write Q = R + I −S, where I is the identity matrix
and S is the standard matrix of the shift as before. We wish to show that
W = (R − I + S)(R + I − S) has no p− 2 dependent columns, and, hence,
Q = R + I − S does not have them either.

Let us note now that all circulant matrices lie in the one-generated sub-
algebra of the matrix algebra generated by S. If A is a circulant matrix with
first column (a0, a1, . . . , ap−1)

T then A =
∑p−1

k=0 akS
k. Let the pth roots of

unity over Q be 1, ω, ω2, . . . ωp−1. Then these roots of unity are exactly the
eigenvalues of S and, hence, the eigenvalues of A will be

λi =

p−1∑
k=0

akω
ki, (i = 1, . . . , p)

(see also [6]). Being in one-generated subalgebra, any two circulant matrices
commute, hence R(I − S) = (I − S)R and W = R2 − (I − S)2.

Denote by τ the Gauss sum
∑p−1

i=1 ( i
p
)ωi. It is known [7] that τ 2 =

(
−1
p

)
p,

and expanding this sum fully allows us to calculate R2. We have(
−1

p

)
p = τ 2 =

(
p−1∑
i=1

(
i

p

)
ωi

)2

=

p−1∑
n=0

ωn
∑

i+j≡n

(
i

p

)(
j

p

)
, (5)

where the congruence in the subscript is modulo p. Since

∑
i≡−j

(
i

p

)(
j

p

)
=

p−1∑
i=1

(
−i2

p

)
=

(
−1

p

)
(p− 1), (6)

the formula (5) implies(
−1

p

)
=

p−1∑
n=1

ωn
∑

i+j≡n

(
i

p

)(
j

p

)
or

−
(
−1

p

) p−1∑
n=1

ωn =

(
−1

p

)
=

p−1∑
n=1

ωn
∑

i+j≡n

(
i

p

)(
j

p

)
.

8



Because {ωn}p−1
n=1 is linearly independent over Q, we must have∑

i+j≡n

(
i

p

)(
j

p

)
= −

(
−1

p

)
(7)

for all n 6= 0.
The (ij)th entry of R2 is equal to

p∑
k=1

(
i− k

p

)(
k − j

p

)
=

∑
m+n≡i−j

(
m

p

)(
n

p

)
,

Therefore, due to (6) and (7), R2 has entries −(−1
p

) everywhere except for

(−1
p

)(p − 1) on the main diagonal. Therefore R2 = −
(
−1
p

)
J +

(
−1
p

)
pI,

where I is the identity matrix and J is the matrix whose entries are all 1.

Because W = −
(
−1
p

)
J+
(
−1
p

)
pI−I+2S−S2 is circulant, we may calcu-

late the eigenvalues of W in the algebraic closure Zq of Zq in a similar way as
for circulant matrices in Q. We first assume that q is different from p. Then
if we let 1, π, π2, . . . , πp−1 denote the solutions to xp = 1 in Zq we find that
the eigenvalues of the circulant matrix with first column (a0, a1, . . . , ap−1)

T

will be

λi =

p−1∑
k=0

akπ
ki
q , (i = 1, . . . , p)

The eigenvalues of W are therefore λi = −(−1
p

)
∑p−1

k=0 πki +
(
−1
p

)
p−1+2πi−

π2i, which when i 6= p can be rewritten as λi =
(
−1
p

)
p− 1 + 2πi−π2i (as we

know the sum of all solutions to xp − 1 = 0 is 0). We know that the matrix
W has nullity at least 2 so λi = 0 for some i ≤ p, i.e. there must be some
θ = πj such that

θ2 − 2θ −
(
−1

p

)
p + 1 = 0. (8)

We first consider the case q = 2. Because we assumed that p 6= q we know
that p is odd, so (8) reduces to

θ2 = 0,

which contradicts our assumption that θ satisfied θp = 1. We assume herein
that q is odd. Suppose that some p − 2 columns of W have a linear depen-
dence. Write the dependency in the form

∑p
i=1 niwi = 0 where ni ∈ Zq and
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two of the ni are 0. The ith row of W gives the following equation between
the n1, . . . , np

−
(
−1

p

) p∑
i=1

ni +

(
−1

p

)
pni − ni + 2ni+1 − ni+2 = 0, (9)

and by taking the difference of the equations corresponding to two consecu-
tive rows we have the equation

ni − 3ni−1 +

(
3−

(
−1

p

)
p

)
ni−2 +

((
−1

p

)
p− 1

)
ni−3 = 0. (10)

We may consider the pth row and 1st row as consecutive rows as well and
in the recurrence relation (10) we can consider indices mod p, if we define
ni+p = ni. When we consider this as a recurrence relation, the characteristic
polynomial of the relation factors in Zq as

(x− 1)(x2 − 2x−
(
−1

p

)
p + 1)) = (x− 1)(x− θ)(x− α),

where θ is as in (8). We recap that θp = 1. Then ni = Aαi + Bθi + C, as it
may be easily shown that 1, θ and α are all different. If we suppose A 6= 0,
the requirement that ni+p = ni forces αp = 1. Assume that both α and θ are
of the form πi and πj respectively. Completing the square in (8) we have

πi = 1 + β and πj = 1− β.

Where β satisfies β2 =
(
−1
p

)
p. Raising both of these equations to the power

of p we obtain

(1 + β)p − 1 = 0 and (1− β)p − 1 = 0. (11)

Expanding these numbers as c ± dβ with c, d ∈ Zq, the fact β is nonzero
implies c and d are both 0. It should be noted that if β is not in Zq we have
c = d = 0 from only one of these equations. In general, however, β may lie
in Zq so the equation c + dβ = 0 does not imply c = d = 0, and we need
both equations to ensure this.

We may now construct a homomorphism

ϕ : Z

(√(
−1

p

)
p

)
−→ Zq(β)
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defined by

ϕ : x + y

√(
−1

p

)
p 7−→ x + yβ

This may be routinely verified to be a homomorphism.
Due to (11) we must have

ϕ

((
1 +

√(
−1

p

)
p

)p

− 1

)
= a + bβ = 0,

from which, as noted above, both a and b in (1) must be divisible by q, which
contradicts gcd(a, b) = p.

In the case A = 0 we have ni = Bθi + C. If ni = nj = 0 for some distinct
i and j we have B + Cθi = B + Cθj = 0 which implies B = C = 0. However
this contradicts the assumtion that the dependence was nontrivial.

We now consider the case q = p. The recurrence relation (9) becomes

−
(
−1

p

) p∑
k=1

ni − ni + 2ni+1 − ni+2 = 0, (12)

and the recurrence relation (10) in this case has characteristic polynomial
(x− 1)3. The latter has solution ni = A + Bi + Ci2. Firstly, we note that

p∑
k=1

ni =

p∑
k=1

(A + Bk + Ck2) = 0.

Indeed, since p 6= 2, we have
∑p

k=1(A + Bk) = pA + 1
2
p(p + 1)B = 0. Also if

β is any primitive element of Zp, then βp−1 = 1,and

p∑
k=1

Ck2 = C

p−2∑
i=0

β2i = C
β2p−2 − 1

β2 − 1
= 0,

where β2 6= 1, because p > 3. Therefore (12) becomes

ni − 2ni+1 + ni+2 = 0,

and, substituting here ni = A + Bi + Ci2, we have 2C = 0.
Therefore ni = A + Bi, and so if ni takes the value 0 twice we must have

A = B = 0, and ni must be identically 0, which implies the dependence is
trivial. Therefore there are no p − 2 dependent columns of Q modulo q for
any q|D, including q = p.
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This gives us (ii) when combined with the following:

Lemma 2. For p > 131,

intspan{u1, . . . ,up} ∩ T p = {±u1, . . . ,±up}.

Proof. We know that the eigenvalues of Q are given by

λi = 1− ωi +

p−1∑
k=0

ωki

(
k

p

)
(i = 1, . . . , p),

and because the sum here is just the Gauss sum τ , if i 6= p (in which case
λp = 0) we have

λi = 1− ωi ±

√(
−1

p

)
p.

It should be noted that λi 6= 0 for i 6= p, so so Q has rank p − 1.
Denote by W the space spanned by the eigenvectors corresponding to nonzero
eigenvalues of Q. Since these eigenvectors are of the form

µi = (1, ωi, ω2i, . . . , ω(p−1)i)T , i = 1, 2, . . . , p− 1,

where ω is a pth root of the unity, we have W = n⊥, where n = (1, . . . , 1) is
the eigenvector belonging to 0. Because |λi| ≥

√
p − 2 for i 6= p, all v ∈ W

satisfy
‖Qv‖ ≥ (

√
p− 2)‖v‖.

In general we may estimate ‖Qv‖ from below as

‖Qv‖ ≥ (
√

p− 2)‖w‖, (13)

where w=projW (v).
If some k = (k1, . . . , kp) ∈ Zp satisfies Uk ∈ T p we have ‖Uk‖ ≤ √

p.
Denote projW (k) by s = (s1, . . . , sp). Because ‖Uk‖ and ‖Qk‖ differ by at
most |k1 − kp| by the triangle inequality, we may combine this with (13) to
obtain √

p + |k1 − kp| ≥ (
√

p− 2)‖s‖ (14)

The first and pth entries of s differ by k1−kp, so the sum of their absolute
values is at least |k1−kp|. By the arithmetic mean - quadratic mean inequality
this implies s2

1 + s2
p ≥ 1

2
|k1 − kp|2, and

‖s‖ ≥ 1√
2
|k1 − kp|.
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Combining this with (14) gives

√
p + |k1 − kp| ≥ (

√
p− 2)

1√
2
|k1 − kp|

or √
2p

(
√

p− 2−
√

2)
≥ |k1 − kp|.

For p > 131 it may be shown this implies |k1 − kp| ≤ 1. We may use a
similar argument to show that ‖projN(k)‖ ≥ 1√

2
|ki − kj| for any i and j, so

√
p + 1 ≥ 1√

2
(
√

p− 2)|ki − kj|

(the 1 here arising from the estimate |k1− kp| ≤ 1). For p > 100 this implies
|ki − kj| ≤ 1 as before. We may therefore assume that some of the ki are
0 and the rest 1. If there are m and ` of each, respectively, s will have m
entries equal to −l

p
and ` equal to m

p
, and, since m + ` = p,

‖s‖2 =
m2` + `2m

p2
=

m`

p
=

m(p−m)

p
.

Since for m = 1 and m = p − 1 we obtain vectors of the form ±ui, we may
assume that 2 ≤ m ≤ p−2.The minimum value of ‖s‖2 will be at m = 2 and

m = p − 2, where it is 2(p−2)
p

. Therefore if there is to be a nontrivial vector

in T p, which is a linear combination of ui’s, by (14) we must have

(
√

p− 2)

√
2(p− 2)

p
≤ √

p + 1,

which can be shown implies p < 100. Therefore for all p > 131, no non-trivial
integral linear combinations of the ui are contained in T p.

We may now check properties (i) and (iii) are satisfied. Because the
bottom left principal minor of U is the same as that of Q, and it is known that
this minor has nonzero determinant, U has rank p−1. Therefore

∑p
i=1 ui = 0

is the only dependence among the columns of U . As (iii) is trivial, U satisfies
all the requirements for the existence of a maximal cone.

4 Conclusion

Conder and Slinko [1] conjectured that g(n) = n for all n ≥ 7 but this hy-
pothesis remains open. However, we believe that g(n) = n for all sufficiently
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large n for a number of reasons. First, the construction used here may be
varied in a number of ways, so that even for irregular primes it is likely that
we may find a matrix of the desired type. Secondly, we think that with some
work our ideas could be extended to numbers with no small prime factors. It
also seems reasonable that for large n the existence of such matrices should
not depend upon number theoretical properties of n.

We note that it is also not known whether or not f(n) can be greater
than g(n).
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