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Abstract
Symmetric horseshoe orbits for the circular restricted three-body problem (R3BP)

have been well studied. Little is known about horseshoe orbits for the more general
and more realistic elliptic problem. We present families of such orbits for the planar
elliptic problem with the Jupiter-Sun mass ratio. The families bifurcate from orbits
for the circular problem and they all have a turning point in the eccentricity. These
turning points lead to new families of horseshoe orbits for the circular problem which
lead to new circular-elliptic bifurcations and so on. Continuation in the eccentricity
thus proves an effective way to find new families for the circular problem.

We also investigate the orbital and vertical stability along with the three-dimensional
bifurcations of the new elliptic orbits, particularly for eccentricities in a small range
about that for Jupiter. We find three-dimensional bifurcations are possible in this
range, showing the dynamics of horseshoe orbits in the Sun-Jupiter system could
be appreciably more complex than modelled by the circular R3BP.
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1 Introduction

The restricted three-body problem (R3BP) has long been used to model the orbital mo-
tional of two massive bodies, known as primaries, and a third body of very small mass.
Much is known about the solutions to the R3BP and it has many applications including
those described in [1], [2], [4], [7], [8], [10], [12], [13], [17], [19], [20], [21] and [24, 25].

Of particular interest because of their applications, see for example [8], [10], [20] and
[21], are symmetric horseshoe orbits. These are periodic symmetric orbits encircling the
Lagrangian points L3, L4 and L5. Two contrasting horseshoe orbits are depicted in Figure
1. The left horseshoe has a smooth outer edge and two loops in its inner edge; the right
horseshoe has loops on both edges. Other horseshoe orbits are depicted in Figure 4.
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Figure 1: Two possible horseshoe orbits for the Sun-Jupiter system. The Sun and Jupiter are
denoted by a circle, with the Sun near the origin and Jupiter near x = 1. The plus signs denote
the Lagrangian points L3 (negative x), L4 (first quadrant) and L5 (fourth quadrant).

Horseshoe orbits for the circular R3BP have been well studied, see for example Schan-
zle [18], Rabe [15] and Taylor [19]. Little is known about horseshoe orbits for the more
general and more realistic elliptic R3BP. We present families of orbits for the Jupiter-Sun
mass ratio that bifurcate from horseshoe orbits for the circular problem and investigate
their stability and three-dimensional bifurcations. The Jupiter-Sun mass ratio was chosen
because of the importance of Jupiter in the dynamics of the Solar System.

In the circular problem, the period T of the massless particle can potentially be any
positive value. In the elliptic problem, T must be an integer multiple of the period of the
two primaries which in the standard, non-dimensionalised units we use is 2π. Although
restrictive, this requirement on T suggests a technique for finding bifurcations of horseshoe
orbits for the circular and elliptic problems - continue a family of horseshoe orbits for the
circular problem until an orbit with T an integer multiple of 2π is located.

We applied this technique to the seven families of horseshoe orbits of Taylor [19].
We continued the families further than in [19] and discovered fourteen circular-elliptic
bifurcations. Each continuation was stopped when the intricacies of the orbits meant a
prohibitive amount of CPU time was required to continue further. Our continuations are
summarised in §2.

Once we had located the bifurcations, we used continuation on the orbital eccentricity
of the primaries to follow the emanating family of elliptic orbits. As we show in §3, these
continuations led to further families of horseshoe orbits for the circular problem, which
led to further families of horseshoe orbits for the elliptic problem and so on. We then
investigated the stability and three-dimensional bifurcations of the new elliptic orbits,
especially for eccentricities in a small interval about that for Jupiter1. Our investigation
is summarised in §4. We end in §5 with a discussion of our work.

We used two predictor-corrector schemes for the continuation. The first had an initial

1We used a small interval and not Jupiter’s exact value (0.048) because of the approximations inherent
in the R3BP and the (small) long-term variation in Jupiter’s eccentricity.
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condition or the eccentricity as the continuation parameter and a cubic predictor (a lower
degree predictor was used for the first four orbits). The second scheme had pseudo-
arclength as the continuation parameter and an Eulerian predictor. The corrector for
both scheme was Newton’s method applied to the conditions for periodicity. The first
scheme was more efficient than the second but could not handle turning points. We
began each continuation with the first scheme, changed to the second scheme to pass a
turning point and then switched back to the first scheme.

Both schemes used an adaptive strategy for the continuation stepsize. The stepsize
was halved if the corrector required five or more interactions to converge, doubled if three
or fewer iterations were required and unchanged if four iterations were required. Newton’s
method was deemed converged if the error in the conditions for periodicity was less than
10−6. The error for most orbits was several orders of magnitude smaller; the exact error
depended on the stability of the orbit and the accuracy of the initial estimate. If the
maximum number of ten iterations was reached without convergence, the continuation
stepsize was halved and the problem re-attempted.

In other respects, our continuation schemes are similar to those commonly used on
the R3BP, see for example Zagouras and Markellos [22], Zagouras and Perdios [23], and
Katsiaris [9]. The state and variational equations were integrated using the order eight
variable-step explicit Runge-Kutta method of Prince and Dormand [14].

We solved the state equations for the elliptic problem in the standard pulsating and
rotating frame of reference with the true anomaly ν as the independent variable. The
state equations for the planar (two-dimensional) problem consist of the equations for x
and y, and are

d2x

dν2
− 2

dy

dν
=

r

p

[
x− (1− µ)(x + µ)

r3
1

− µ(x + µ− 1)

r3
2

]
,

(1)
d2y

dν2
+ 2

dx

dν
=

r

p

[
y − (1− µ)y

r3
1

− µy

r3
2

]
,

where µ is the mass ratio for the primaries, p = 1− ε2, ε being the orbital eccentricity of
the primaries, r = (1− ε2)(1 + ε cos ν)−1, r2

1 = (x + µ)2 + y2 and r2
2 = (x + µ − 1)2 + y2.

These equations reduce to those for the circular problem by setting ε = 0 and replacing ν
with the time t as the independent variable. We took µ = 0.000953875 as the Jupiter-Sun
mass ratio.

Orbital instability (see §4) meant it was impossible to follow some families of circular
orbits as accurately or as far as we wanted using double precision (16 digit arithmetic),
and we resorted to quadruple precision (32 digit arithmetic). Quadruple precision is 21
times slower than double precision on our computer and its use meant some of our runs
required several days of CPU time.

2 Taylor’s seven families

Rabe [15] gave some horseshoe orbits for the circular problem with the Jupiter-Sun mass
ratio and conjectured there was a family of such orbits. The initial conditions for the
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orbits were chosen so y(0) = ẋ(0) = 0 which meant the orbits were symmetric about the
x-axis. Taylor [19] greatly extended this work by showing there existed many, possibly
infinitely many, families of (symmetric) horseshoe orbits that could be followed by using
continuation on x(0). Taylor gave representative orbits from seven families and described
how the stability and the number of loops on the inner and outer edges varied along these
families.

The orbits given in Tables 1, 2 and 3 of Taylor [19] and listed here in Table 1 were
used as the starting points for our initial continuations on x(0). For each orbit of each
continuation, ẏ(0) was found by solving the periodicity condition and T was defined by
the time of crossing of the x-axis; y(0) and ẋ(0) were zero for all orbits.

Family x(0) ẏ(0) T/(2π)
h(9, 8) −1.09147 0.13205 9.3878
h(9, 9) −1.05828 0.07617 10.4102
h(10, 11) −1.07931 0.11627 12.3840
h(13, 14) −1.06857 0.10140 15.3692
h(16, 17) −1.05691 0.08350 18.3366
h(20, 21) −1.03136 0.04083 22.2728
h(27, 28) −1.02680 0.03897 29.1966

Table 1: Starting orbits for our initial continuations on x(0). The first column lists Taylor’s
nomenclature for the families. The remaining columns list x(0), ẏ(0) and Ts = T/(2π).

Figure 2 gives the graphs of Ts = T/(2π) against x(0) for each of the seven families.
The integer values of Ts are labelled as kA where k is Ts and A = a, b, . . ., indicates
for most cases the order the bifurcations for Ts = k were located. The seven families
were continued as far as numerically feasible. The general shape of all families except
for h(9, 9) is similar in that Ts appears to asymptotically approach an integer value at
the rightmost end. For h(9, 8), h(9, 9), h(10, 11), h(13, 14) and h(20, 21) both ends of
the families depicted in Figure 2 have not terminated but further continuation would
have required prohibitive amounts of CPU time. For h(27, 28) the leftmost end of the
branch has terminated. The loops of the orbits near this endpoint enlarged until they
started to coincide. Further continuation led to the loops collapsing onto a single loop.
This loop became smaller until it enclosed L1 only, thus no longer a horseshoe orbit.
This behaviour had been reported by Schanzle [18] who noticed this collapse occurred for
x(0) = −2. Taylor [19] conjectured such a collapse would happen for h(27, 28) at both
ends of the family and the resulting orbits would be members of a different family.

We conjecture from the shape of the solution reached that a similar collapse occurs
for h(16, 17).

As we move right to left along the Ts(x(0)) curves for h(9, 8), h(10, 11), h(13, 14) and
h(20, 21), we observe a turning point in x(0) at the first approach to x(0) = −2. This
leads to a second and in three cases, a third integer value for Ts.

Family h(9, 9) is unique among the seven families in having no integer values for Ts.
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Figure 2: The scaled period Ts as a function of x(0) for each of Taylor’s seven families. The
vertical axis gives Ts and the horizontal axis x(0). The integer values of Ts are labelled.
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3 Continuation on ε for h(9, 8)

We had intended to present continuations on ε for each of the fourteen circular-elliptic
bifurcations identified in the previous section. We began with the bifurcations for h(9, 8)
and found the resulting structure was appreciably richer than we expected, making it
impractical to present the results for all bifurcations.

The orbits 9a, 9b and 8a were taken as starting points for continuation on the ec-
centricity ε. We first describe the findings for 9a and 9b. Figure 3 gives the families
of solutions found. We observe for 9a that ε does not increase monotonically towards
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Figure 3: Continuation on ε: A - from 9a, B - from 9b.

one. Instead there is a turning point at ε ≈ 0.228 and ε returns to zero to give a new
circular-elliptic bifurcation. We label the circular orbit at this bifurcation 9c. A similar
thing happens with 9b, giving a new circular orbit we label 9d. In both cases, there is
the possibility of a new family of circular orbits. We return to this point later.

Figure 4 illustrates changes in the orbits along the curve 9a-9c. As ε increases, the orbit
forms six outer loops and the two inner loops become larger. These loops enlarge with
increasing ε. After ε reaches its maximum value, the loops shrink and eventually disappear
to give a smooth outer curve when ε = 0. We also observe that as ε increases, x(0) becomes
more negative and the two arms of the horseshoe orbit start to cross at ε ≈ 0.210. This
crossing means the particle of infinitesimal mass makes very close approaches to Jupiter.

We next performed a continuation on x(0) starting with the two new circular orbits
9c and 9d. We found the branches through 9c and 9d join. Hence while 9c and 9d are
different circular orbits, they are of the same family. We also found another orbit with
Ts = 8, we label this orbit 8c, and a turning point at x(0) ≈ −2. Figure 5 gives the curve
Ts(x(0)) and the location of 8c.

Plot A in Figure 6 depicts the continuation on ε from orbit 8a. As before, ε had a
turning point, this time at ε ≈ 0.616, and upon return to ε = 0 we obtained a new orbit
with Ts = 8. We label this orbit 8b.

We took orbit 8b and continued on x(0) to trace out a family for the circular problem,
see Plot B, Figure 6. This continuation led to an orbit with Ts = 7. We label this orbit
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Figure 6: A - continuation on ε from 8a; B - continuation on x(0) from 8b.

7a. We then continued on ε from orbit 7a to find solutions for the elliptic problem with
Ts = 7. This family is given in Plot A, Figure 7. This continuation found another orbit
for Ts = 7, we label this orbit 7b. We next used continuation on x(0) to find the family
containing 7b, see Plot B, Figure 7. The continuation produced a third orbit with Ts = 8.
We label this orbit 8e (and not 8d because we anticipate a continuation on ε from 8c
would give a new circular orbit 8d).

The relationship between the orbits for integer values of Ts found by continuation on
ε and x(0) are summarised in Figure 8. The initial values for the orbits in Figure 8 are
given in Table 2.

We observe by comparing the Ts(x(0)) curves in Figures 5, 6 and 7 with those in
Figure 2 that the families of circular horseshoe orbits containing 7a, 7b, 8b, 8c, 8e, 9c
and 9d are different from Taylor’s seven families. Thus continuation in ε has provided
an effective way to find new families of circular horseshoe orbits. Zagouras and Perdios
[23] used a similar approach to find periodic orbits for the planar circular problem. They
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Orbit x(0) ẏ(0)
9a −1.079981 0.108206
9b −1.175110 0.278948
9c −1.110849 0.159983
9d −1.150879 0.236022
8a −1.172541 0.270077
8b −1.041666 0.018151
8c −1.163723 0.253041
8e −1.049192 0.032854
7a −1.063201 0.055933
7b −1.072533 0.072576

Table 2: The initial conditions for some circular-elliptic bifurcation orbits.

found three-dimensional periodic orbits through an ascent from families of planar orbits;
the subsequent descent to the plane found new families for the planar case. Zagouras
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and Perdios describe this an efficient way to locate new families of orbits for the planar
circular problem.

4 Linear stability analysis

In this section we give a brief review of vertical and orbital stability for the planar problem
and present a summary of these stabilities for the families of elliptic orbits 9a-9c, 9b-9d,
8a-8b and 7a-7b.

The concept of vertical stability was introduced by Hénon [6] for the circular planar
problem. This type of linear stability examines the growth of perturbations perpendicular
to the x− y plane and is measured using the parameter sv. An orbit is vertically stable if
|sv| < 1 and vertically unstable if |sv| > 1. If sv = 1, there is a bifurcation with a three-
dimensional orbit of the same multiplicity (the number of crossings of a prescribed plane or
axis) as the planar orbit; if sv = −1, there is a bifurcation with a three-dimensional orbit
of twice the multiplicity. Zagouras and Markellos [22] discuss these types of bifurcations
in more detail.

The parameter sv can be calculated as follows, see for example Markellos [11]. The
state equations for the planar problem are extended to those for the three-dimensional
problem and then written as the six first-order equations ˙w(t) = f(w(t)) where w =
[x, y, z, ẋ, ẏ, ż]T and z is the coordinate perpendicular to the x− y plane. The variational
equations for w(0) are then

V̇ =
∂f(w)

∂w
V (2)

where V is the 6 × 6 matrix defined as vij = ∂fi/∂w0j , w0j being wj(0). The state and
variational equations are integrated from t = 0 to t = T to give the monodromy matrix
V (T ); the state equations are included because f depends on w. We then have

sv =
v33(T ) + v66(T )

2
. (3)

As Robin [16] points out, the concept of vertical stability generalises to the elliptic
problem, with the expression for sv being the same as for the circular problem.

Orbital stability for the planar problem examines the growth of perturbations to the
initial conditions x(0), y(0), ẋ(0) and ẏ(0). Thus orbital stability deals with perturbations
in the plane and complements vertical stability.

Orbital stability for the circular problem is measured using the eigenvalues of the
monodromy matrix. Bray and Goudas [3] derived necessary and sufficient conditions for
a three-dimensional periodic orbit to be orbitally stable (one of these conditions was later
corrected by Hadjidemetriou [5], p. 262). The derivation of [3] simplifies markedly for a
planar orbit. Equation (74) in [3] for the relevant eigenvalues λ becomes φ(λ) = λ2+αλ+1
where α = −Tr(V (T )) + 2 and V (T ) is the monodromy matrix for the planar problem.
Since the constant term in φ(λ) is 1, the two roots of φ must be reciprocals of one another.
If the roots are real, whether distinct or equal, perturbations in the initial conditions will
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in general grow with t. Hence stability requires the roots of φ be complex. This is
equivalent to requiring

−2 < α < 2. (4)

Unlike vertical stability, the conditions for orbital stability for the circular and elliptic
problems differ. Katsiaris [9] derived the conditions for orbital stability of the three-
dimensional elliptic problem. For the planar elliptic problem, these conditions reduce to
requiring φ(λ) = λ4 + α1λ

3 + α2λ
2 + α1λ + 1 has complex roots. This requirement is the

same as that for orbital stability of the three-dimensional circular problem. Thus, the
conditions for orbital stability of the planar elliptical problem are, see for example [22],

∆ > 0, |p| < 2, |q| < 2, (5)

where ∆ = α2 − 4(β − 2), p = (α +
√

∆)/2, q = (α − √
∆)/2, α = 2 − Tr(V (T )),

β = (α2 + 2− Tr(V 2))/2.
The stability plots for 9a-9c, 9b-9d, 8a-8b and 7a-7b are shown in Figure 9. The left

hand plots give sv against ε and the right hand plots γ ≡ sinh−1(λM) against ε where λM

is the magnitude of the largest eigenvalue of V (T ). We used sinh−1 for the ordinate in
the right hand plots because of the large variation in λM and to induce a larger scale for
λM near 1.

We observe from the left hand plots of Figure 9 that the curves for sv(ε) for families
9a-9c, 9b-9d and 7a-7b are similar. A same observation holds for the curves for γ(ε). The
curves for the remaining family (8a-8d) are noticeably different, particularly the curve for
γ(ε).

All the orbits for family 8a-8b and most orbits for the remaining families have |sv| < 1.
Hence most orbits for the four families are vertically stable - a body perturbed out of the
plane will return to the plane. The vertically unstable orbits do not have large values for
|sv| and hence the vertical instability is mild.

Each of the families 9a-9c, 9b-9d and 7a-7b has two values of ε where sv = −1. Thus
the three families collectively have six bifurcations with three-dimensional orbits of twice
the multiplicity of the planar orbit. Of greater interest for the present work are the three
bifurcations with sv = 1. These occur for ε = 0.032 (family 9a-9c), ε = 0.047 (9b-9d)
and ε = 0.034 (7a-7b), indicating bifurcations with three-dimensional orbits of the same
multiplicity for eccentricities close to Jupiter’s (0.048) are possible.

In marked contrast to vertical stability most orbits are orbitally unstable. Of the
35,417 orbits used to form the curves in the right hand plots Figure 9, only three are
stable. These three are in the 9a-9c family and occur at and on either side of the maximum
of ε (≈ 0.228). We also observe that increasing ε for families 9b-9d and 7a-7b usually
leads to less instability. For family 9a-9c, the orbit 9a is more unstable than many of the
orbits with ε > 0 on the branch of the λM(ε) curve from the orbit 9a to the one with
the maximum ε. A similar observation holds for orbit 9c. The variation of the instability
with ε is far less for the remaining family 8a-8b.
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Figure 9: Stability plots for family 9a-9c (top), 9b-9d (top centre), 8a-8b (bottom centre) and
7a-7b (bottom). The ordinate of the left and right plots are sv and γ = sinh−1 λM respectively.
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5 Discussion

We found families of horseshoe orbits for both the circular and elliptic R3BP with the
Jupiter-Sun mass ratio, and investigated the stability and three-dimensional bifurcations
of the new elliptic orbits.

We began by searching Taylor’s [19] seven families of horseshoe orbits for the circular
problem for bifurcations with elliptic orbits. As part of this work, we extended the
continuations of Taylor. We found fourteen bifurcations with the number of bifurcations
per family being zero, one, two or three. Once the bifurcations were located we continued
on the eccentricity ε to find families of orbits for the elliptic problem. We found ε had
turning points and this led to new families of horseshoe orbits for the circular problem.
We performed continuation on these new families and this led to new families of elliptic
horseshoe orbits and so on.

We investigated the stability of four families of elliptic orbits. We found most orbits
were vertically stable but orbitally unstable. We also found that moving along a family in
the direction of increasing ε often reduced the orbital instability. We examined the orbits
of the four families more detail for eccentricities in a small interval about Jupiter’s. We
found bifurcations with three-dimensional orbits of the same multiplicity as the planar
orbits. Bearing in mind the approximations inherent in the R3BP and the (small) long-
term variation in Jupiter’s eccentricity, our bifurcation analysis of the elliptic orbits shows
the dynamics of horseshoe orbits in the Sun-Jupiter system could be appreciably more
complex than modelled by the circular R3BP.
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[6] M. Hénon, Vertical stability of periodic orbits in the restricted problem, Astron.
Astrophys., 28 (1973), 415-426.

[7] C.J. van Houten, I. van Houten-Groeneveld, Minor planets and related objects. V.
The density of Trojans near the preceding Lagrangian point, Astron. J., 75 (1970),
5, 659 - 662.

[8] O. Karlsson, Transitional and temporary objects in the Jupiter Trojan area, Astron.
Astrophys., 413 (2004), 1153-1161.

[9] G. Katsiaris, The Three-Dimensional Elliptic Problem, in Recent Advances in Dy-
namical Astronomy, 3ed., B.D. Tapley, V. Szebehely (eds.), D. Reidel, Dordrecht-
Holland, pp. 118-134, 1973.
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