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Abstract

The numerical integration of Newton’s equations of motion for self-
gravitating systems, particularly in the context of our Solar System’s
evolution, remains a paradigm for complex dynamics. We implement
Störmer’s multistep method in backward difference, summed form and
perform arithmetic according to a technique we call “significance or-
dered computation.” We achieve results where the truncation error
of our 13th order integrator resides well below machine (double) pre-
cision and roundoff error accumulation is random, not systematic. In
a previous study, we achieved this “Brouwer’s Law” in integrations of
the 2-D Kepler Problem. Here we show that such error growth can be
attained in 3-D Solar System integrations. Our integrations are such
that the positions of the major planets are known with an estimated
error of no more than 2◦ after 109 years, a precision unmatched by
earlier investigations. Further, we show the outer Solar System is not
chaotic, as has previously been reported, but rather computational
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errors in positions grow no faster than t3/2 conforming with exist-
ing models for stochastic error growth in an otherwise well-behaved
ordinary differential equation system.
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1 Introduction

Celestial mechanics in general, and Solar System dynamics in particular,
offers profound challenges to both applied and computational mathemati-
cians. As the Sun and planets formed, planetesimals, solid bodies rich in
metals, silicates and possibly ice, underwent a violent dynamical birth, often
resulting in their amalgamation or their accretion into the planets, or be-
ing gravitationally ejected from the Solar System. This winnowing process
depended upon the planetesimals’ energy and angular momentum. Aster-
oids are found primarily between the orbits of Mars and Jupiter, and at
the leading and trailing Lagrange points of Jupiter. Comets reside in both
the Edgeworth-Kuiper Belt and the Oort Cloud—beyond the realm of the
planets. Planetesimals that survived this sorting process represent a class
of objects whose trajectories reside near separatrices that distinguish them
from objects that ultimately fell into the Sun and planets, or were catapulted
away, and hold essential clues to the Solar System’s origin and evolution.
Planetesimal trajectories can reside, therefore on the edge on chaos and the
Solar System’s dynamics requires very special care.

Several studies, for example [4], [5], [6], [3] and [10], have reported the
results of billion-year integrations of planets and planetesimals in the Solar
System. Our ability to track the complex five billion year history of the Solar
System is highly contingent upon our resourcefulness in following accurately
the trajectories of planetesimals living on the edge of chaos. We [7] reported
test results for a modified version of the Störmer method (for example [8]
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p. 462, [9] p. 291) integrating the 2-D Kepler Problem. The integrator
used a backward difference, summed form implementation and a technique
we call “significance-ordered computation.” We performed two sets of 10
million orbit integrations, with orbital eccentricities of 0.05 and 0.5. For
both sets of integrations, sixteen sets of initial conditions with different initial
orbital longitudes were chosen, and the RMS errors in energy and longitude
calculated. We showed the error in the system energy grew approximately as
n1/2 and the error in the longitude as n3/2, where n is the number of steps and
is directly proportional to the CPU time. In other words, the accumulated
error was as would be expected in the absence of systematic error in the
integration scheme.

When an integration technique is applied to Solar System problems, its
accuracy is typically examined using the error growth in the total system
energy and other conserved quantities (e.g., in an action-angle formulation)
such as the longitude or phase difference of the planets; see, for example, [12],
[13], [15], [17]. However, it is often insufficient to minimize only the error in
the energy or other conserved quantities. It is also important to minimize
the phase error. For example, while the orbits of the planets Neptune and
Pluto cross, the planets are in a 3:2 orbital resonance that keeps them from
approaching each other. If the numerical error in the angular position of the
planets is too large, Neptune would eventually have a close encounter and
either scatter or collide with Pluto.

2 Solar System Integration Results

We performed sixteen different integrations of the planets, except Mer-
cury whose mass was absorbed into that of the sun. For each of these sixteen
integrations, we integrated for a time interval equivalent to 2i Venus orbits,
where i is an integer from 0 to 18. We used the final positions and velocities
of the Sun and planets from the forward integrations as starting conditions
to integrate backwards in time. At the end of each backward integration,
we calculated the relative error in the energy and the angular position of
the entire system. These forward and backward integrations represent excel-
lent method-independent tests of an integrator’s performance in a nonlinear
regime. Since the errors in an integrated are continually being added, both
deterministic (from truncation error) and stochastic (from roundoff error),
and since these error sources are statistically independent, no cancellation of
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error occurs. The initial planetary positions and velocities for these integra-
tion were taken from the Jet Propulsion Laboratory ephemeris DE245 which
ranges over approximately 300 years. We extracted sixteen sets of initial
conditions at random multiples of ten years.

The total energy of a gravitationally-interacting N body system is
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where Mi, i = 1, . . . , n, is the mass of the i-th body, vi its center-of-mass
speed, and G the universal gravitational constant. We are interested in the
relative energy error of our integration method, or ∆E/E, where

∆E
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GE − GE0

GE0

(2)

We employ the latter form since we know the product of G and the masses
with much greater precision than we know G or the masses separately.

For our integrations of the planets, we also examine the angular position
error of the planets. Given the initial position for a planet ri, and its final
position rf , we define the angular position error λ as:

λ = arcsin

(
‖ri × rf‖
‖ri‖‖rf‖

)
(3)

where ‖ · ‖ denotes the L2 norm. If our computations had no truncation or
roundoff error, we would expect that these forward and backward integrations
would yield ri = rf . Thus, λ is a useful measure of the accumulated error
present in these calculations.

The relative energy error for our integration of the planets and Sun is
plotted in Fig. 1. The error, consistent with our 2-D Kepler problem runs,
grows at a rate less than n1/2 and after 524,288 orbits of Venus (approximately
322,000 years) we have a total relative energy error of less than 2.44× 10−12.
The quantitative value of the difference between our observed error growth
and n1/2 is likely due to the finite number of integrations we have performed;
our previous paper showed this difference was to be expected.

The angular position errors for the terrestrial planets are plotted in Fig.
2, and those for the jovian planets in Fig. 3. The angular position error
for Pluto, while not shown, grew as n1.45, and at the end of the run had

4



an angular position error of less than 10−5 radians. In fact, the angular
position errors for all planets grow at rates less than n3/2. At the end of the
integrations, the angular position error for Jupiter is approximately 2.1×10−7

radians. Extrapolated to one billion years, this yields an error of less than
one degree. By comparison, [12] reported an error in Jupiter’s longitude of
0.83 degrees over five million years; [1] list their error in Jupiter’s position as
100 degrees in 100 Million years.
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Figure 1: Energy error for the entire Solar System.

Further tests were based upon integrations of the outer Solar System,
adding the mass of the terrestrial planets to that of the Sun. For 16 different
sets of initial conditions generated from the JPL DE245 ephemeris we inte-
grated the trajectories of the jovian planets for a time interval equivalent to
2i Jupiter orbits, where i is an integer between 0 and 25. At the end of each
integration, we used the positions and velocities of the Sun and planets as
starting conditions to integrate backwards in time.

Figure 4 shows the relative RMS energy error for the entire system. We
observe the energy error grows as n0.48, very nearly n1/2, indicating the ab-
sence of systematic error growth. Given that we are using a finite number of
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Figure 2: Angular position error for the terrestrial planets.

integrations, our results are in good agreement with theory.
Figure 5 shows the RMS angular position errors for all of the jovian plan-

ets. The errors planets grow at rates nearly n3/2 and after 226 Jupiter orbits
(225 orbits forward and 225 orbits backwards, nearly 800 million years), the
error for all planets is less than 1.9 × 10−2 radians (≈ 1.09◦). Extrapolated,
the angular position error after 109 years is less than two degrees for all
planets

Apart from the fact that these results show Brouwer’s Law can be achieved
in a practical simulation, they point to another clear implication. Previ-
ous studies such as in [16] have reported the outer Solar System is chaotic.
Chaotic systems are characterized by the exponential divergence of nearby
trajectories and have both stable and unstable manifolds. In particular, sup-
pose we select different initial conditions and compute the orbit for some
length of time and then reverse the direction of the integration in order to
identify how close we are upon return to our initial conditions. During the
course of the computation, we expect that truncation error and roundoff error
will cause the computed solution to depart from the exact solution associated
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Figure 3: Angular position error for the jovian planets.

with the initial conditions. If chaotic behavior is to be expected for that set
of initial conditions —i.e. an unstable manifold is present— the orbit will
show exponential divergence from the exact solution going both forward and
backward in time and will return to the starting point with an error that
has grown exponentially in time. The rate the error grows with time will
be characterized by the same Lyapunov time which characterizes the chaotic
character of the problem. If chaotic behavior is not to be expected— i.e.
no unstable manifold exists—the divergence of the computed solution upon
return from its initial conditions will not depend upon the elapsed time in an
exponential fashion, but will vary as a power-law in elapsed time owing to the
cumulative effects of truncation and roundoff error. If an unstable manifold
was present, only a set of measure zero of initial conditions (in the presence
of computational error) would not show exponential divergence. None of our
sixteen randomly selected initial conditions showed chaotic behaviour. Our
results agree with those of [11] who performed long integrations and found
that planetary motions were stable.
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Figure 4: Energy error for the outer Solar System.

3 Conclusion

All of our N -body tests manifested a quantitatively similar behavior in
error growth as the energy and longitude error obtained in the 2-D Kepler
problem, and all manifested error growth diagnostic of an integrator whose
primary source of error is stochastic roundoff error. In addition to showing
that Brouwer’s Law is attainable in a 3-D integration of the Solar System, we
have shown that previous claims of outer Solar System chaos are questionable.
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Figure 5: Angular position error for the outer Solar System.
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