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Abstract

Here we propose a simple condition for the compactness of the
resolvent of the Laplace-Beltrami operator on a class of smooth Rie-
mannian manifolds.

1 Introduction

Some work has been done on finding conditions for the discreteness of op-
erators on manifolds, see for instance [5, 2] and references therein. Related
results may be found in [3]. Here we prove a simple condition for the compact-
ness of the resolvent of the Laplace-Beltrami operator on a class of smooth
manifolds of arbitrary dimension. Our proof takes a lot from the work in [1]
and at the centre of the proof is a weighted Hardy inequality, independently
discovered by the authors but which is a specific case of the inequality in [4].

2 Condition for Discreteness

Consider a smooth n-dimensional manifold M which is both non-compact
and has finite volume. The cases where M is compact or has infinite vol-
ume are easily disposed of: for compact M we immediately have that the
Laplacean is discrete and for infinite volume we immediately have that it has
a branch of continuous spectrum.

We consider the class of manifolds for which the following assumption holds:
the non-compact part of M can be written as a finite union of disjoint sets
Mione = U, U; and furthermore we assume that on each U; we can find
coordinates so that the metric is expressed

|dl|* = ds® + o*(s) |d€]* .



Here |d¢|” is the metric on a compact n — 1-dimensional manifold K and the
non-compact region is parameterised by

U, = {(5,€) € (0,00) x K} .

It is clear from the definition that the coordinate s measures arc-length along
geodesics. The condition for finiteness of the volume is equivalent to the
integrablity of ¢"~! on the semi axis. The form of volume may be written

dp = o™ 1 (s)dsde™? (1)

where dé"! is the form of volume on K. The Laplace-Beltrami operator is
easily seen to have the form

0 0
= 1-n 7 n-1"7 A
L=o 9s°  9s T8
where again A is the Laplacean on K.
Now consider the Hilbert space
H = L* (M, dp)

of square integrable functions on M with respect to the volume form with
inner product

29 I/Mffldu-

It is well known that for a suitable domain £ is a selfadjoint operator in H.
The Dirichlet integral of £ is (Lf, f),,. Using the coordinates defined above
it is clear that on each non-compact U; the Dirichlet integral takes the form

|+ 19e ) do

(3

where the subscript indicates differentiation and V¢ is the divergence on K.
To state our condition for discreteness we define a new measure v on each of
the U;. Really for subsets

Viaa ={(s,€) € (a,00) x A} C U;,

where A C K, we define

o=l ( [ 25 2)

Here |A| is the measure of A in K. Let us denote V; ; = V; ;.. We note that
v, like p, is smooth with respect to Lebesque measure in the coordinates
and finite on subsets V;, , for s > 0 (however, unlike y, it is not finite in
neighbourhoods of s = 0). Our theorem is written in terms of these measures.
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Theorem 2.1 The Laplace-Beltrami operator on M has compact resolvent
iff in each non-compact neighbourhood U;

lim a (Vi’s>

=0.
s—0o0 I/ (Vti,s)

For its proof we need the following weighted Hardy inequality which is written
in terms of the measures p and v with the dependence on the coordinates &
on the sphere dropped.

Lemma 2.1 Given du and defining the associated measure dv as above we
have the following inequality

/0 " P(s) duls) < 4 / T (Fuls)? duls). 3)

for functions vanishing in a neighbourhood of the origin.

The proof of this lemma may be found using standard techniques. For details
and a more general formulation see the paper by Muckenhoupt [4].

Theorem 2.2 The set
N ={f; 1fI%, =, Fhau < {LF ) a < ¢}
15 compact in H iff in each non-compact neighbourhood U; of M

lim M(V;’5>
S—00 V (‘/,vi,s>

=0. (4)
Proof: (<) It is not difficult to see that the set

No= {5 12, < elef Pru, <}
is compact in L?(M,,du) where

Ma:M\U‘/i,a

is a compact set. Consequently we just need to show that the ‘tails’

/w |fldp

,a

of f € N go to zero uniformly as a — oo.

Without loss of generality we may assume that f € N is real and smooth
and, since we are only interested in the behaviour of the tails, that f is zero
in a neighbourhood of s = 0. Writing

F(s) =2 / TR ) dr
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where for now we ignore the dependence on &, we get

[ rome = 2 [ [ s
= 2 B /:Odﬂ(r)/osf(t)fs(t)dt

= 2| [Caun [ U ronwa

v(t, 00

+ /OO (s, 00) /Oo dp(r) f(s) fs(s)v(s, 00) dS]

IN

2 [( ) / " du(r) / O£t 00) di +

o o)
< 20w (v (s00) [T aun)) [T IO 00) ds

Here we have used the notation

o= ([ aﬂflﬂm)_l '

We note from (2) that

v%(s,00)
7=1(s)

where we emphasise that we have ignored the dependence on &. Then the
right hand side of the inequality becomes

/0 TS L ($)s.00)ds = / TEI6,0) ) ¢ 1025 (5) ds

)

< [/ () dv(s) ] [/ £2(5) 2 dis(s) ]
<9 / () du(s)

thanks to the Hardy inequality (3). Integrating over the angular coordinates
the inequality becomes

dv(s) = ds,

1 (Vis)
v (Vis)

/ P < dsup ey ),
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Since f € N the Dirichlet integral is bounded and by the hypothesis the
supremum can be made as small as desired by making a large so we are
done.

(=) We proceed by contradiction assuming that the limit (4) is strictly pos-
itive. We claim that this implies the existence of a sequence {s;} such that

st 8
/ n: / o" tds > ¢y >0 (5)
o O S

where § is the unique solution of z(8) = 2z(s) and

5 odr
2(s) —/0 s

Really by contradiction we suppose that given ¢ > 0 we can find S such that

for all s > S )
/ d81 / " lds < e.
0 on- s

I (‘/;75) — /S S /OO O_n—lds

V(‘/;78) 0o 0 -1 s

= / dsl </ o" tds + / o tds + - )
0 on- s §

s 1 ]
= z(s)/ a”_lds—|—§2z(s)/ o tds+ -

1 1
< €+§€+"'+2—n€+"':2€

Then

d

~
~

where we have used 2z(s) = 2(8), 42(s) = 2(8), ... But this contradicts our
assumption that (4) is not zero giving the existence of {s;}.
Let us take a subsequence {s;, } such that

Z (Slk+1> >3z (Slk) : (6)

We drop the extra subscript and denote this sequence by {sx} and also put
2z, = z(sk). Let us choose a smooth real function 7 with support (2, 3) which
is equal to one on [1,2]. Then we construct the sequence of functions

W@Q:ﬁM(i»-

S
2k
"(2)
2k

The Dirichlet integral is

[ o) Pan = e [

2
1 ds
— = cn/ ' (y)Pdy = cpca

2k on—1
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for some constant ¢;. Likewise the L? norms of the wy

z Sk
/|uk|2d,u = Zk/ n(z—k) duszcn/ du
Sk
Sk dS §k
= cn/ — / o tds > e,c
0 9 Sk

are bounded below. Therefore we may normalise this sequence in H, v, =
ug/|ug| a1, and in doing so the Dirichlet integral remains bounded by

2

(&1
(Lo, o) < —,
Co
ie. {vx} € N. Furthermore we have from (6) that the support of v, and
v, are disjoint so that the sequence is orthonormal, ie. we have an infinite
orthonormal sequence in N which consequently cannot be compact. O

Corollary 2.1 The Laplace-Beltrami operator £ on H has only discrete
spectrum iff the measure satisfies (4).

Proof: From the previous theorem we have that the set of elements bounded
with respect to the quadratic form

Flfl =L+ D[, [lm

is compact in H. This means that the preimage under /£ 4 1 of a bounded
set in H is a compact set in H, ie. the inverse operator is compact. This
gives us the desired discreteness of the spectrum. O

Remark 2.1 The weighted Hardy inequality by Muckenhoupt [}] generalises
the inequality stated here to the case of LP spaces. This raises the question
of whether it is possible to use [4] to generalise the result in this paper to LP
spaces over a manifold.
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