
Condition for the Discreteness of the
Laplacean on a Manifold

Mark Harmer and Boris Pavlov
Department of Mathematics

University of Auckland
New Zealand

Abstract

Here we propose a simple condition for the compactness of the
resolvent of the Laplace-Beltrami operator on a class of smooth Rie-
mannian manifolds.

1 Introduction

Some work has been done on finding conditions for the discreteness of op-
erators on manifolds, see for instance [5, 2] and references therein. Related
results may be found in [3]. Here we prove a simple condition for the compact-
ness of the resolvent of the Laplace-Beltrami operator on a class of smooth
manifolds of arbitrary dimension. Our proof takes a lot from the work in [1]
and at the centre of the proof is a weighted Hardy inequality, independently
discovered by the authors but which is a specific case of the inequality in [4].

2 Condition for Discreteness

Consider a smooth n-dimensional manifold M which is both non-compact
and has finite volume. The cases where M is compact or has infinite vol-
ume are easily disposed of: for compact M we immediately have that the
Laplacean is discrete and for infinite volume we immediately have that it has
a branch of continuous spectrum.
We consider the class of manifolds for which the following assumption holds:
the non-compact part of M can be written as a finite union of disjoint sets
Mnonc =

⋃
i Ui and furthermore we assume that on each Ui we can find

coordinates so that the metric is expressed

|dl|2 = ds2 + σ2(s) |dξ|2 .
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Here |dξ|2 is the metric on a compact n− 1-dimensional manifold K and the
non-compact region is parameterised by

Ui = {(s, ξ) ∈ (0,∞)×K} .

It is clear from the definition that the coordinate s measures arc-length along
geodesics. The condition for finiteness of the volume is equivalent to the
integrablity of σn−1 on the semi axis. The form of volume may be written

dµ = σn−1(s) ds dξn−1 (1)

where dξn−1 is the form of volume on K. The Laplace-Beltrami operator is
easily seen to have the form

L ≡ σ1−n ∂

∂s
σn−1 ∂

∂s
+ ∆ξ

where again ∆ξ is the Laplacean on K.
Now consider the Hilbert space

H = L2 (M, dµ)

of square integrable functions on M with respect to the volume form with
inner product

〈f, g〉M =

∫
M

fḡ dµ .

It is well known that for a suitable domain L is a selfadjoint operator in H.
The Dirichlet integral of L is 〈Lf, f〉M . Using the coordinates defined above
it is clear that on each non-compact Ui the Dirichlet integral takes the form∫

Ui

(
|fs|2 + |∇ξf |2

)
dµ

where the subscript indicates differentiation and ∇ξ is the divergence on K.
To state our condition for discreteness we define a new measure ν on each of
the Ui. Really for subsets

Vi,a,A = {(s, ξ) ∈ (a,∞)×A} ⊂ Ui ,

where A ⊂ K, we define

ν (Vi,a,A) = |A|
(∫ a

0

ds

σn−1(s)

)−1

. (2)

Here |A| is the measure of A in K. Let us denote Vi,s = Vi,s,K . We note that
ν, like µ, is smooth with respect to Lebesque measure in the coordinates
and finite on subsets Vi,s,A for s > 0 (however, unlike µ, it is not finite in
neighbourhoods of s = 0). Our theorem is written in terms of these measures.
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Theorem 2.1 The Laplace-Beltrami operator on M has compact resolvent
iff in each non-compact neighbourhood Ui

lim
s→∞

µ (Vi,s)

ν (Vi,s)
= 0 .

For its proof we need the following weighted Hardy inequality which is written
in terms of the measures µ and ν with the dependence on the coordinates ξ
on the sphere dropped.

Lemma 2.1 Given dµ and defining the associated measure dν as above we
have the following inequality∫ ∞

0

f 2(s) dν(s) ≤ 4

∫ ∞

0

(fs(s))
2 dµ(s) . (3)

for functions vanishing in a neighbourhood of the origin.

The proof of this lemma may be found using standard techniques. For details
and a more general formulation see the paper by Muckenhoupt [4].

Theorem 2.2 The set

N =
{
f ; |f |2

M
= 〈f, f〉M < c, 〈Lf, f〉M < c

}
is compact in H iff in each non-compact neighbourhood Ui of M

lim
s→∞

µ (Vi,s)

ν (Vi,s)
= 0 . (4)

Proof: (⇐) It is not difficult to see that the set

Na =
{

f ; |f |2
Ma

< c, 〈Lf, f〉Ma
< c
}

is compact in L2(Ma, dµ) where

Ma = M\
⋃
i

Vi,a

is a compact set. Consequently we just need to show that the ‘tails’∫
Vi,a

|f |2dµ

of f ∈ N go to zero uniformly as a →∞.
Without loss of generality we may assume that f ∈ N is real and smooth
and, since we are only interested in the behaviour of the tails, that f is zero
in a neighbourhood of s = 0. Writing

f 2(s) = 2

∫ s

0

f(r)fs(r) dr ,
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where for now we ignore the dependence on ξ, we get∫ ∞

a

f 2(s) dµ(s) = 2

∫ ∞

a

∫ s

0

f(r)fs(r) dr dµ(s)

= 2

[
−
∫ ∞

s

dµ(r)

∫ s

0

f(t)fs(t) dt

∣∣∣∣s=∞
s=a

+

∫ ∞

a

∫ ∞

s

dµ(r) f(s)fs(s) ds

]

= 2

[∫ ∞

a

dµ(r)

∫ a

0

ν(t,∞)

ν(t,∞)
f(t)fs(t) dt +

+

∫ ∞

a

ν−1(s,∞)

∫ ∞

s

dµ(r) f(s)fs(s)ν(s,∞) ds

]

≤ 2

[
ν−1(a,∞)

∫ ∞

a

dµ(r)

∫ a

0

|f(t)fs(t)|ν(t,∞) dt +

+ sup
s≥a

(
ν−1(s,∞)

∫ ∞

s

dµ(r)

)∫ ∞

a

|f(s)fs(s)|ν(s,∞) ds

]

≤ 2 sup
s≥a

(
ν−1(s,∞)

∫ ∞

s

dµ(r)

)∫ ∞

0

|f(s)fs(s)|ν(s,∞) ds .

Here we have used the notation

ν(s,∞) =

(∫ s

0

dr

σn−1(r)

)−1

.

We note from (2) that

dν(s) =
ν2(s,∞)

σn−1(s)
ds ,

where we emphasise that we have ignored the dependence on ξ. Then the
right hand side of the inequality becomes∫ ∞

0

|f(s)fs(s)|ν(s,∞) ds =

∫ ∞

0

|f(s)|ν(s,∞)

σ
n−1

2 (s)
|fs(s)|σ

n−1
2 (s) ds

≤

[∫ ∞

0

|f(s)|2 dν(s)

] 1
2
[∫ ∞

0

|fs(s)|2 dµ(s)

] 1
2

≤ 2

∫ ∞

0

|fs(s)|2 dµ(s)

thanks to the Hardy inequality (3). Integrating over the angular coordinates
the inequality becomes∫

Vi,a

f 2(s)dµ ≤ 4 sup
s≥a

µ (Vi,s)

ν (Vi,s)
〈Lf, f〉M .
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Since f ∈ N the Dirichlet integral is bounded and by the hypothesis the
supremum can be made as small as desired by making a large so we are
done.
(⇒) We proceed by contradiction assuming that the limit (4) is strictly pos-
itive. We claim that this implies the existence of a sequence {sl} such that∫ sl

0

ds

σn−1

∫ ŝl

sl

σn−1ds ≥ c0 > 0 (5)

where ŝ is the unique solution of z(ŝ) = 2z(s) and

z(s) =

∫ s

0

dr

σn−1
.

Really by contradiction we suppose that given ε > 0 we can find S such that
for all s > S ∫ s

0

ds

σn−1

∫ ŝ

s

σn−1ds < ε .

Then

µ (Vi,s)

ν (Vi,s)
=

∫ s

0

ds

σn−1

∫ ∞

s

σn−1ds

=

∫ s

0

ds

σn−1

(∫ ŝ

s

σn−1ds +

∫ ˆ̂s

ŝ

σn−1ds + · · ·

)

= z(s)

∫ ŝ

s

σn−1ds +
1

2
2z(s)

∫ ˆ̂s

ŝ

σn−1ds + · · ·

≤ ε +
1

2
ε + · · ·+ 1

2n
ε + · · · = 2ε

where we have used 2z(s) = z(ŝ), 4z(s) = z(ˆ̂s), . . . But this contradicts our
assumption that (4) is not zero giving the existence of {sl}.
Let us take a subsequence {slk} such that

z
(
slk+1

)
> 3 z (slk) . (6)

We drop the extra subscript and denote this sequence by {sk} and also put
zk = z(sk). Let us choose a smooth real function η with support (3

4
, 9

4
) which

is equal to one on [1, 2]. Then we construct the sequence of functions

uk(s, ξ) =
√

zk η

(
z(s)

zk

)
.

The Dirichlet integral is∫
|u′k(s)|2dµ = ck

∫ ∣∣∣∣η′( z

zk

)∣∣∣∣2 1

zk

ds

σn−1
= cn

∫
|η′(y)|2dy = cnc1
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for some constant c1. Likewise the L2 norms of the uk∫
|uk|2dµ = zk

∫ ∣∣∣∣η( z

zk

)∣∣∣∣2 dµ ≥ zkcn

∫ ŝk

sk

dµ

= cn

∫ sk

0

ds

σn−1

∫ ŝk

sk

σn−1ds ≥ cnc0

are bounded below. Therefore we may normalise this sequence in H, vk =
uk/|uk|M, and in doing so the Dirichlet integral remains bounded by

〈Lvk, vk〉M ≤ c1

c0

,

ie. {vk} ⊂ N . Furthermore we have from (6) that the support of vl and
vm are disjoint so that the sequence is orthonormal, ie. we have an infinite
orthonormal sequence in N which consequently cannot be compact. 2

Corollary 2.1 The Laplace-Beltrami operator L on H has only discrete
spectrum iff the measure satisfies (4).

Proof: From the previous theorem we have that the set of elements bounded
with respect to the quadratic form

F [f ] = 〈(L+ 1) f, f〉M

is compact in H. This means that the preimage under
√
L+ 1 of a bounded

set in H is a compact set in H, ie. the inverse operator is compact. This
gives us the desired discreteness of the spectrum. 2

Remark 2.1 The weighted Hardy inequality by Muckenhoupt [4] generalises
the inequality stated here to the case of Lp spaces. This raises the question
of whether it is possible to use [4] to generalise the result in this paper to Lp

spaces over a manifold.
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[1] M. Š. Birman. The spectrum of singular boundary problems. In Ameri-
can Mathematical Society Translations Series 2, volume 53, pages 23–80.
American Mathematical Society, 1966.

[2] V. A. Kondratiev, V. Maz’ja, and M. A. Shubin. Discreteness of spectrum
and strict positivity criteria for magnetic schrödinger operators. Comm.
Partial Differential Equations, 29:489–521, 2004.

[3] V. G. Maz’ja. Sobolev Spaces. Springer, Berlin, New York, 1985.

6



[4] B. Muckenhoupt. Hardy’s inequality with weights. Studia Math., 44:31–
38, 1972.

[5] M. Shubin. Spectral theory of the schrödinger operator on non-compact
manifolds. In Brian Davies and Yuri Safarov, editors, Spectral theory
and geometry, volume 273 of London Mathematical Society Lecture Note
Series, pages 226–283, 1999.

7


