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Abstract

The integration of Newton’s equations of motion for self-gravitating
systems, particularly in the context of our Solar System’s evolution,
remains a paradigm for complex dynamics. We implement Störmer’s
multistep method in backward difference, summed form and perform
arithmetic according to what we call “significance ordered computa-
tion”. We achieve results where the truncation error of our 13th order
integrator resides below machine (double) precision and roundoff error
accumulation is strictly random and not systematic.
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1 Introduction

Many large N -body problems emerging in nature obey Newton’s laws
of motion and their simulation has become important to understanding the
origin and evolution of planetary systems, as well as macromolecules in bio-
logical applications, the behavior of charged particles in plasmas, and other
applications. Billion-year Solar System integrations are now routine ([5], [6],
[7], [2], [11], [12]; and others).

Commonly, these systems are only marginally (gravitationally) bound,
with a significant number of their members being lost from the system and
with significant numbers of surviving members being close to a dynamical
separatrix and subject to subtle resonant effects and potential ejection from
the system. Consequently, numerical methods that normally assure some
measure of robust structural stability (e.g., symplectic methods) require ex-
traordinarily small stepsizes to assure that the trajectories they produce accu-
rately shadow the underlying dynamics. Moreover, the computational com-
plexity associated with symplectic splitting schemes for the Kepler problem
in celestial mechanics and Solar System studies can result in unacceptably
large roundoff errors, and the inability to capture the true dynamics of the
problem. In large N -body problems, the computation of the force f (per
unit mass) is highly laborious and should be kept to a minimum.

We want to exploit the availability of force information over a significant
interval of time. A multistep method of high order ideally would serve this
purpose since it provides a direct means of evaluating the integral form of
Newton’s Law

x (t) = x0 + v0t +

∫ t

0

f [x (s) , s] (t − s) ds (1)

by using an interpolating polynomial approximation for f [x (t) , t]. The rai-

son d’etre of this paper is the development of a methodology that will com-
pute the most accurate solution that is possible for a given problem on a
given computer, an approach explored in depth in [4]. In this sense, our
methodology meets the criterion of [3] for an a posteriori symplectic scheme.
Put another way, we seek to suppress the truncation error from our computed
trajectories, while we minimize the role of roundoff error.
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While this approach is more computationally intensive than others, it
assures that our computation of the trajectories of planets, asteroids, and
comets is as reliable as possible and mitigates subtle numerical effects in
the presence of dynamical separatrices that can produce artificial chaos. As-
suming that the underlying problem is not manifestly chaotic, Brouwer [1]
showed for a fixed stepsize that the growth of error will proceed as t1/2 for
conserved quantities such as the energy and as t3/2 for other dynamical vari-
ables such as the position where t is the integrated time. Importantly, we
have found that problems previously believed to be chaotic—such as the dy-
namical evolution of the outer Solar System—are not chaotic in the limit of
suitably small stepsize and the use of the procedures that we now describe.

Our philosophy is to employ a high-order Störmer multistep integration
scheme, e.g. [9], [8], with a formal truncation error that lies below machine
precision and that minimizes the accumulation of arithmetic roundoff error.
Truncation error is generally systematic, while roundoff error can be rendered
random (i.e., not systematic) if suitable precautions are taken. By keeping
truncation error below machine precision, the solution obtained will be as

accurate as is possible for that machine. We exploit a set of procedures that
are well-known in the numerical analysis community, e.g. [10], but are not
often fully-utilized, to help assure that roundoff accumulation is not system-
atic. The increased computational expense for this increased reliability and
accuracy is often within reach of current fast workstations.

In what follows, we will derive “Brouwer’s Law” for a simple dynamical
problem, that of Brownian motion. Then, we will review Störmer’s method
for solving Newton’s laws of motion ẍ = f [x (t) , t], and how we can numer-
ically integrate this equation so that the truncation error resides well below
machine precision and how, using a process that we call “significance ordered
computation”, we can minimize the accumulation of roundoff error. We ex-
plore how the competition between truncation and roundoff error allows us
to match Brouwer’s Law. Finally, we will conclude by showing tests of 107-
orbit integrations for the two-dimensional Kepler problem, demonstrating
our ability to match the 1937 prediction of Brouwer. In a companion paper
[7], we will meet Brouwer’s prediction over one billion years.

2 Brouwer’s Law

Brouwer [1] explored the role of errors in summing tabular entities, and
applied his analysis to numerical integration. We briefly review how Brouwer
obtained his celebrated law for a simple paradigm mimicking the production
of roundoff error, noting that his analysis can be generalized through the
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use of so-called action-angle variables in classical mechanics. Suppose we are
exploring Brownian motion, i.e., ẍ (t) = f (t), as an initial value problem
with x (0) = v (0) = 0 , v (t) ≡ ẋ (t). We obtain

v (t) ≡
∫ t

0

f (τ) dτ (2)

and that

x (t) =

∫ t

0

v (τ) dτ =

∫ t

0

∫ τ

0

f (s) dsdτ =

∫ t

0

f (s) (t − s) ds (3)

by partial integration.
Suppose we express our original ordinary differential equation in centered

finite difference form, namely xn+1−2xn+xn−1 = h2fn where h is the stepsize
and xn ≡ x (nh). We assume that we know x−1 and x0; for convenience and
for consistency with the above, we assume that both vanish. The difference
form corresponds with Störmer’s second-order scheme, a methodology that
we will elaborate upon shortly, and can be identified directly with a leap-frog
method upon making the substitution vn+1/2 = [xn+1 − xn] /h, and which can
be readily shown to be symplectic. In particular, we can write the pair of
expressions vn+1/2 = vn−1/2 + hfn and xn+1 = xn + hvn+1/2 where we know
x0 = 0 and v−1/2 = 0. Accordingly for n = 0, . . ., we can write

vn−1/2 = h

n−1
∑

i=0

fi (4)

and

xn = h
n

∑

i=1

vi−1/2 = h2

n−1
∑

i=0

fi (n − i) . (5)

We summed by parts to obtain the latter expression, parallelling the second
integral above.

Suppose for a moment that 〈fn〉 = ζ 6= 0 for n ≥ 0, which would be
the case if the fluctuating force had a definite trend. Then, it follows that
〈

vn−1/2

〉

would grow as nhζ ∝ tn and 〈xn〉 would grow as n2h2ζ ∝ t2n. We
now assume that 〈fn〉 = 0 which is a true “random walk.” It then follows
that 〈vn〉 = 〈xn〉 = 0. We now wish to mimic unbiased roundoff in the last
bit position of a computer and assume that h2 〈f 2

n〉 = σ2 ≥ 0, and 〈fnfm〉 = 0
for n 6= m ≥ 0, i.e., the fluctuations are uncorrelated, from which it follows
that

〈

v2
n−1/2

〉

= h2

n−1
∑

i,j=0

〈fifj〉 = nσ2 (6)
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which is proportional to tn. (Note that we defined our stochastic forcing so
that the random walk due to roundoff would depend only upon the number
of operations, and not upon the stepsize.) We identify the latter with the
energy of the particle, which was initially zero; hence, the error in the energy
varies directly with time and the RMS (root-mean-squared) velocity varies

with t
1/2
n ; had there been a systematic drift (ζ 6= 0), then the RMS velocity

varies with tn. For an integration over a fixed total time t = nh, the energy
error would be independent of stepsize. Finally, we examine

〈

x2
n

〉

= h2σ2

n−1
∑

i=0

(n − i)2 = h2σ2

[

n

6
+

n2

2
+

n3

3

]

∝ t3n (7)

thereby making the RMS position (error) varies as t
3/2
n ; again, had there been

a systematic drift, then the RMS position (error) would vary as t2. For an
integration over a fixed total time t = nh, RMS position error would vary
∝ h−1/2. We will see later how these short stepsize limits are realised.

3 Störmer’s Method

We return to Newton’s law in scalar, Cartesian form ẍ (t) = f [x (t) , t].
Our derivation here proceeds in three parts. We will introduce polynomial
interpolation formulae of [9], [8], define the problem at hand, and then derive
the integral formulae that must be evaluated. Finally, we will combine this
formula with the polynomial interpolation approximation to produce the
generating functions that are relevant and display their leading coefficients.

We select a reference time t0 wherein tn ≡ t0 + nh, n = 0, 1, 2, . . . , where
h is the stepsize. The sampled positions are then denoted by xn ≡ x (tn). In
principle, we wish to exploit the structure we explored earlier in the form

xn+1 − 2xn + xn−1 = h2

q
∑

i=0

βifn−i, q ≥ 0. (8)

We introduce the backward difference operator defined by ∇yn ≡ yn − yn−1

for any subscripted variable yn so that, for m = 2, 3, 4, . . ., ∇myn ≡ ∇m−1yn−
∇m−1yn−1 and define ∇0yn ≡ y0. By induction, we then observe that

∇qyn =

q
∑

m=0

(−1)m

(

q

m

)

yn−m, (9)

where
(

q

m

)

=
q (q − 1) . . . (q − m + 1)

m!
, (10)
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for all q, and where
(

q
0

)

≡ 1. Now, we invert the expression for ∇qyn according
to

yn−q =

q
∑

m=0

(−1)m

(

q

m

)

∇myn, q = 0, 1, . . . , (11)

which can easily be shown by application of the binomial theorem. Im-
portantly, the presence of binomial coefficients introduces large terms that
makes the previous representation for the multistep method ill-conditioned to
roundoff and, accordingly, we will use the backward difference (and summed-
form which we will define later) to minimize roundoff effects (see the next
section). We now define a time-like variable s = (t − tn) /h, which relates
to the time elapsed since the mensuration time tn in units of the stepsize h.
It follows that the degree q polynomial Pf that interpolates fn, fn−1, . . . ,
fn−q+1 by virtue of our expression for yn−q and the Fundamental Theorem of
Algebra is

Pf (t) =

q
∑

m=0

(−1)m

(−s

m

)

∇mfn, (12)

which we will refer to as our interpolation formula, since the latter reduces
when −s = 0, 1, . . . , q.

We now integrate Newton’s Law from tn to some time tn + σ, whereupon
we obtain the formal result

ẋ (tn + σ) = ẋ (tn) +

∫ tn+σ

tn

f [x (z) , z] dz. (13)

We now integrate the latter expression from tn to tn + τ , namely

x (tn + σ) = x (tn) +

∫ tn+σ

tn

ẋ (tn + τ) dτ

= x (tn) + ẋ (tn) σ +

∫ tn+σ

tn

dτ

∫ tn+τ

tn

dzf [x (z) , z] (14)

= x (tn) + ẋ (tn) σ +

∫ tn+σ

tn

dzf [x (z) , z] [tn + σ − z] ,

where we have interchanged the order of integration to obtain the final form.
Suppose we set σ = −h, whereupon the latter becomes

xn−1 = xn − hẋn +

∫ tn

tn−h

dzf [x (z) , z] [z − (tn − h)] (15)

yielding

xn−1 = xn − hẋn +

∫ tn+h

tn

dzf [x (2tn − z) , 2tn − z] [tn + h − z] . (16)
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Similarly, we find

xn+1 = xn + hẋn +

∫ tn+h

tn

dzf [x (x) , z] [tn + h − z] . (17)

When we add the latter two expressions, we obtain the desired form

xn+1 − 2xn + xn−1 =

∫ tn+h

tn

dz [tn + h − z] {f [x (s) , z] +

f [x (2tn − z) , 2tn − z]} . (18)

Finally by taking the difference between the equations for xn+1 and xn−1, we
obtain

ẋn+1 = [xn − xn−1] /h + h−1

∫ tn

tn−h

dzf [x (z) , z] [z − (tn − h)] +

∫ tn+h

tn

dzf [x (z) , z] .

We will now employ the interpolation formula of [9], [8] to evaluate approxi-
mately the integrals that appear in the latter two expressions. We obtain

xn+1 − 2xn + xn−1 = h2

q
∑

m=0

∇mfn (−1)m ×
∫ 1

0

ds (1 − s)

[(−s

m

)

+

(

s

m

)]

(19)
after substantial algebra, where q + 2 is the order of the method. We write
this as

xn+1 − 2xn + xn−1 = h2

q
∑

m=0

βm∇mfn, (20)

where

βm = (−1)m

∫ 1

0

ds (1 − s)

[(−s

m

)

+

(

s

m

)]

(21)

for m = 0, . . . ,∞. In order to perform the integral efficiently, we construct
a generating function

Gβ (ζ) =
∞

∑

m=0

βmζm = [ζ/ log (1 − ζ)]2 / (1 − ζ) (22)

after some effort. We observe that the coefficients are monotone decreasing—
albeit very slowly. As a consequence, we are well-advised to employ the
backward-difference form and truncate the sum of terms when the higher or-
der difference terms become sufficiently small. If we were to convert this
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expression to standard form, i.e. using fn−i instead of ∇ifn, the coeffi-
cients would become large and alternate in sign, see [13], inducing substantial
growth in roundoff.

Using the above well-known procedure, we obtain (for the first time) the
following backward-difference form for the velocities

ẋn+1 = (xn − xn−1) /h + h

∫ 0

−1

ds (s + 1)
∞

∑

m=0

(−1)m

(−s

m

)

∇mfn +

h

∫ 1

0

ds
∞

∑

m=0

(−1)m

(−s

m

)

∇mfn (23)

so that

ẋn+1 = (xn − xn−1) /h + h
∞

∑

m=0

γm∇mfn, (24)

where γm is the computed integral associated with h∇mfn. Accordingly, we
define a generating function

Gγ (ζ) ≡
∫ 0

−1

ds (s + 1)
∞

∑

m=0

(−1)m

(−s

m

)

ζm +

∫ 1

0

ds

∞
∑

m=0

(−1)m

(−s

m

)

ζm

=

∫ 0

−1

ds (s + 1) (1 − ζ)−s +

∫ 1

0

ds (1 − ζ)−s (25)

=
(1 − ζ)2 − ln (1 − ζ)

(1 − ζ) ln2 (1 − ζ)
− 1

ln2 (1 − ζ)
.

Our earlier observations regarding monotonicity of the series and backward
differences apply equally well here. The velocity is rarely needed, but Gγ is
provided to permit the calculation of the kinetic and total energies. We turn
to roundoff accumulation and its mitigation.

4 Implementation and Results

Roundoff error has long been known to be a major limiting factor in
long-term Solar System integrations. Brouwer [1] pioneered this field and
many others have since contributed. Especially noteworthy are Quinn and
Tremaine [14] and Quinlan [13] who also employed variants of Störmer’s
method. Using conventional computers (cf. special purpose machines with
extended precision), they achieved Brouwer’s Law with energy error ∝ t1/2

and position error ∝ t3/2 over 107 and 108 timesteps, respectively. Grazier et
al. [5], [6] achieved these limits over 1011 timesteps—the implications of the
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latter to Solar System dynamics are discussed in [7]. Higham [10] provided
an encyclopedic treatment of roundoff error. Quinlan [13] appreciated the
importance of using backward differences and “summed form”. However,
Quinlan did not observe the benefit of forcing truncation error to reside well
below the precision of the computer, thereby making roundoff error the re-
maining major issue. As an illustration of how significant issues relating to
roundoff error have become, dynamical astronomers, see [14] for example,
largely abandoned CRAY X-MP computers since they did not abide by the
ANSI/IEEE Standard 754 for floating point arithmetic and produced unac-
ceptably large errors (primarily due to biased rounding in hardware). We
now describe the procedure that we developed and call “significance ordered
computation” which is based on two principles.

First, we formulate our multistep procedure so that all series that must
be summed utilize coefficients of comparable magnitude. We have already
remarked that the backwards difference form for the multistep formula has
this benefit. The important point here is that the explicit conversion of
terms in ∇mfn into summations over fn−m results in binomial coefficients
with alternating signs that will vary over several orders of magnitude. This
alone can result, as we have observed in long-time simulations, in the loss of
four or more significant digits. A related issue emerges from writing xn+1 =
2xn−xn−1+h2×. . .. the coefficient 2 multiplying xn is sufficient to exacerbate
rounding effects. We avoid this by using the “leap-frog” formulation wn+1/2 =
(xn+1 − xn) /h wherein we can write in place of our original equation xn =
xn−1 + hwn−1/2 and wn+1/2 = wn−1/2 + h× . . .. This recasting of the original
expressions is generally called “summed-form.”

Second, we take particular care in evaluating

q
∑

m=0

βm∇mfn−m. (26)

Higham [10] defines what he calls the insertion method wherein elements
yi of a series that must be summed are sorted by increasing magnitude and
summed pairwise. Since we select our stepsize h to assure that the truncation
error resides several magnitudes below machine precision, the summation
that we must evaluate, when placed in reverse order, has exactly this effect.
This follows because each successive term is often more than an order of
magnitude smaller than the previous one. Our numerical test have verified
this procedure yields two or more significant figures and, most importantly,
assures that our roundoff errors have zero mean, i.e., do not have a systemic
bias. The combination of Higham’s insertion method with the use of summed-
forms and backward differences constitutes what we call significance ordered
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Figure 1: Global (longitude) error vs. stepsize for the Kepler Problem.

computation. We shall now review some numerical tests that reveal our
scheme’s remarkable accuracy in keeping with Brouwer’s Law over the billion-
plus year time scales relevant to Solar System evolution.

Our first tests applied Störmer’s 13th order scheme, using significance
ordered computation, to obtain the global position error after 105 orbital
periods of the Kepler problem, a conservative system, with eccentricity of
0.05 (that of Jupiter). While we could have established the error from the
formal (exact) solution, we chose to use Quinn and Tremaine’s [14] forward-
back method where we integrate forward in time for, say, 2m orbits where m
is an integer, and then integrate back to see how well we recover our initial
conditions. It is well known, e.g. [9], that Störmer’s method of (local) order
p presents a global error of order p − 2. Figure 1 reveals two asymptotic
scalings and a transition (blue) regime. The truncation dominated (black)
regime shows a power-law of 10.8, very close to the expected 11, while the
roundoff dominated (red) regime shows a power-law of −0.514, very close to
the expected −1/2. Importantly, we observe that stepsizes below 10−3 times
the period (or, more correctly, the shortest timescale in the problem) brings
us into the regime where roundoff dominates.

To test the scaling properties of the error in our integration method,
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Figure 2: Longitude and relative energy error in the Kepler Problem for low
(e=0.05) and high (e=0.5) eccentricities.

we performed sets of 10 million orbit integrations—with different, randomly
chosen, initial positions—for the Kepler problem. We performed surveys for
initial eccentricities 0.05 and 0.5 (an “oscillatorily stiff” problem containing a
very wide distribution of time scales when compared to more nearly-circular
planetary orbits). Each test survey was performed using sixteen independent
runs so that average and RMS properties of the integrator could be estab-
lished. Reporting the RMS of several runs is of particular importance should
the integrator exhibit error growth properties consistent with Brouwer’s Law.
The e = 0.05, the RMS relative energy error after 10 million orbits was
9.4 × 10−12 and the RMS longitude error was 5.4 × 10−4 radians (left panel
of Figure 2). For e = 0.5, much higher harmonics are present and we expect
some diminution in the quality of the results, since the horizontal axis in
Figure 2 is in effect the product of the stepsize with the highest frequency
present. Our time step was approximately 0.1% of the period—we had exe-
cuted ≈ 1010 timesteps on a computer with 16-digit precision. Accordingly,
the energy error can be expected to be of order

√
1010 × 10−16 or ≈ 10−11.

Moreover, these tests showed that the error in the energy grew approximately
as t1/2 and the error in the longitude as t3/2. In other words, the accumulated
error was what we expected in the absence of systematic errors associated
with truncation or less-than-caution rounding. In [7], we shall show these
observations hold for simulations of the outer Solar System over 108 orbits.
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5 Conclusions

We developed a methodology predicated on producing the most accurate
numerical solution possible on a given computer of the solution of Newton’s
laws of motion. We use a stepsize sufficiently small to assure that truncation
error resided well below machine precision, and took steps to mitigate and
eliminate any systematic influences of roundoff error. While this procedure
is more costly than other schemes, it produces results that are orders of
magnitude more accurate and, sometimes, qualitatively different. In [7], we
will pursue further this theme examining the dynamics of our Solar System.
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