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Abstract

F. Berezin and L. Faddeev interpreted Fermi zero-range model as a self-adjoint extension of the

Laplacian. Various modifications of this model in conventional Hilbert space possess rich spectral

properties, but unavoidably have the negative effective radius and contain numerous parameters

which do not have a direct physical meaning. We suggest, for spherically-symmetric scattering, a

generalization of the Fermi zero-range model supplied with an indefinite metric in the inner space

and a Hamiltonian of the inner degrees of freedom. Effective radius of this model may be both

positive or negative. We propose also a general principle of analyticity formulated in terms of

kcotδ(k) as a function of the scattering phase shift δ(k) depending on the wave-number k. This

principle allows us to evaluate all parameters of the model, including the indefinite metric tensor

of the inner space, once the basic parameters of the model: the spectrum of the inner Hamiltonian,

the scattering length and the effective radius, are fixed, such that the sign of the effective radius is

connected with the spectrum of the inner Hamiltonian by the appropriate consistency condition.

PACS numbers: 03.65.Nk, 82.20.Fd, 28.20.Cz

Keywords: zero-range potential

∗Electronic address: pavlov@math.auckland.ac.nz
†Electronic address: vik@phy.auckland.ac.nz

1



I. INTRODUCTION

In [1] a realistic description of quantum scattering by a point-wise object was interpreted,
based on [2], in terms of J. von Neumann operator extensions. From the point of view
developed in [1, 3], the solvable zero-range model suggested by Fermi in [2], is actually a
self-adjoint extension, see [4], of the Laplace operator defined on smooth functions which
have a singularity at the origin

Ψ(r) =
Aψ

4πr
+ Bψ + o(1), (1)

with the asymptotic boundary values A and B submitted to the real boundary condition,
γ = γ̄

γA+ B = 0. (2)

This operator has only trivial spectral structure (one negative eigenvalue −κ
2
, for κ = 4πγ >

0 or one resonance κ′ = i4πγ for γ < 0). In attempt to extend the construction to solvable
models with rich spectrum, Wigner suggested in [5] to calculate scattered waves for the
Schrödinger operator with compactly supported potentials V (r), (V (r) = 0 for r = |r| > r0)
imposing an appropriate energy-dependent boundary condition at r = r0 . From the modern
point of view, the suggestion of Wigner is equivalent to matching the scattering Ansatz
in the outer space r > r0 with solutions of the Schrödinger equation on the inner space
r < r0 based on Dirichlet-to-Neumann map (DN-map) Λ of the Schrödinger operator on the
inner space, see [6]. In particular, for the spherically-symmetric potential V , when using the
spherically symmetric Ansatz for the scattered waves (in “s-channel”):

ψ(r, k) =
C

r
sin(kr + δ(k)) :=

C

r
χ(r, k), r > r0 (3)

in the outer space, one can present the matching condition in form
(

∂

∂r
χ(r, k) + α(k)χ(r, k)

) ∣∣∣
r=r0

= 0. (4)

Here α is the corresponding Weyl-Titchmarsh function, see [7] - the component of the DN-
map in s-channel. Unfortunately, this condition contains the full spectral data ( encoded
in α(k) ) of the inner problem, thus reducing the scattering problem to the inner spectral
problem. Nevertheless the suggestion of Wigner inspired numerous attempts to construct
energy-dependent potentials characterized by the energy-dependent boundary conditions.
In [8] the “zero-range potential with inner structure” was suggested based on replacement,
for spherically-symmetric scattering, the Schrödinger operator in the inner space by a finite
matrix which plays a role of the Hamiltonian of the inner degrees of freedom. Then the
role of the component α of the DN-map is played by the analog F (k) of the corresponding
Krein-function, see [9]. The operator extension procedure suggested in [8] is equivalent to
imposing of the “asymptotic boundary condition” at the origin :

(
1

χ(r, k)

∂

∂r
χ(r, k)

) ∣∣∣
r=0

= kcotδ(k) := F (k). (5)

Here the function F (k) is defined by the spectral structure of the Hamiltonian of the inner
degrees of freedom and by the boundary parameters of the model, see [8]. The operator
extensions approach allows to construct simple solvable models for few - channels and few -
body scattering systems with interesting resonance properties, without solving sophisticate
boundary problems, see [10–13] and more references in [14]. The behavior of the function
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F (k) which corresponds to the zero-range model [8] looks similar to the low-energy behavior
of the corresponding function in s-channel for conventional rapidly decreasing potentials, see
[15]:

F (k) = kcotδ(k) = −1

a
+

r0

2
k2 . . . . (6)

The parameters r0, a in (6) are called, respectively, the effective radius of the scatterer
and the scattering length, see [15]. They are measured in experiment. Unfortunately the
zero-range model [8] with inner structure and positive metric in the inner space

a. unavoidably has a negative effective radius, [16], because in that case −F is a Nevan-

linna class function of λ = k
2
, =F =λ < 0 and

b. It contains numerous “extra parameters” which have no straightforward physical in-
terpretation and hence are not fitting parameters. These are: the deficiency vector in the
inner space and the boundary parameters.

We propose a procedure to repair both defects a,b for a “special zero-range model”, with
an indefinite metric on the inner space, see section 4, and the scattering phase shift δ(k) (we
call it further just “the scattering phase”) if the function F is selected as an entire function

of the parameter λ = k
2
:

F (k) =
∞∑

l=0

glk
2l. (7)

In case of finite-dimensional “inner space” dimE = n the function F (k) submitted to this
principle of analyticity is just a polynomial degree 2n. The condition (7) enables us to
evaluate all “extra parameters” of the special zero-range model with inner structure, if the
fitting data : the scattering length, the effective radius and the spectrum of the Hamiltonian
of the inner degrees of freedom are connected by the appropriate consistency condition. The
standard self-adjoint quantum Hamiltonian of the model is obtained via restriction of the
model onto the absolutely continuous subspace which has the positive metric. More physical
discussion and fitting of the model to experimental data can be found in [17].

II. PRELIMINARIES: SYMPLECTIC EXTENSION PROCEDURE

Zero-range model with inner structure can be constructed via operator extension procedure
applied to an orthogonal sum of a restricted bounded inner Hamiltonian and the restricted
Laplacian in L2(R3). But the classical version of the operator-extension procedure, [4],
is inconvenient for differential operators. The extension procedure for them is usually re-
duced to choosing of a Lagrangian plane of the corresponding symplectic boundary form
e.g ∂u

∂r
(r0)v̄(r0) − u(r0)

∂v̄
∂r

(r0),for Laplacian in the outer space r > r0 . I.M. Gelfand in the
1960s, [18], attracted attention of specialists to necessity of developing a simplectic version
of the operator extension procedure for abstract operators. It was done in [8] for solvable
quantum models with bounded inner Hamiltonian and positive metric in the inner spaces.
In this preliminary section we describe the symplectic version of the extension procedure for
operators in Pontryagin space, based on an abstract analog of the boundary form.

Consider the scattering problem for two quantum particles with masses m1 , m2 and
the reduced mass µ = m1 m2(m1 + m2)

−1
. Choosing some characteristic wave number

k0 > 0 and the corresponding characteristic energy E0 = (2µ)
−1~2

k
2

0
, we introduce the

dimensionless coordinates and the corresponding spectral parameter, connected with the
standard Euclidean coordinates r in R3 and the conventional energy E = (2µ)

−1~2
k

2
as

x = k0r, λ = k
2

k−2

0
= E(E0)

−1

. (8)
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Then we re-write the conventional Schrödinger equation as
(
4+ λ− Ṽ (x)

)
u(x) = 0. (9)

Here Ṽ (x) = E−1
0 V (r) is the dimensionless interaction potential. The wave functions u(x)

are dimensionless. We will replace the equation (9) by the zero-range model, assuming that
the component of the model in the outer space is defined by the Schrödinger equation with
zero potential. The “free” Green’s function which corresponds to the equation with zero
potential on the whole space R

3
, satisfies the equation

−(4+ λ)Gλ(x, x′) = δ(3)(x− x′) (10)

and has a form of an outgoing wave generated at the pole x′:

Gλ(x, x′) = −(4+ λ)−1δ(3)(x− x′) =
ei
√

λ|x−x′|

4π|x− x′| . (11)

We assume that the outer space is supplied with the standard L2(R
3
) - dot-product 〈u, αv〉 =

α〈u, v〉 = 〈ᾱu, v〉 and the non-perturbed two-body Hamiltonian is defined by the three-
dimensional self-adjoint Laplacian with respect to dimensionless coordinates

lu = −4 u, (12)

on the Sobolev class W 2
2 (R

3
). Variables x̃, ỹ, . . . are used for the inner space E of the model.

Following [1] we restrict the Laplacian l onto the domain consisting of all smooth functions
vanishing near the point x0 . The closure l0 of the restricted operator is defined on the domain
D0 which consists of all W 2

2 -functions vanishing just at x0 . This operator is symmetric and
has deficiency indices (1, 1):

(l0 − iI)D0 = L2(R3)ªNi, (l0 + iI)D0 = L2(R3)ªN−i,

dim Ni = dim N−i = 1. The adjoint 0perator l+0 = (−4)
+

is defined, due to the von
Neumann theorem, see [4, 19], by the same differential expression (12) on the domain

D+
0 = D0 + Ni + N−i. (13)

The one-dimensional deficiency subspaces Ni, N−i are spanned by the corresponding non-
perturbed free Green functions

Ni = {G−i(∗, x0)} , N−i = {Gi(∗, x0)} ,

G−i(x, x0) =
ei
√−i|x−x0 |

4π|x− x0|
, Gi(x, x0) =

ei
√

i|x−x0 |

4π|x− x0|
=

l + iI

l − iI
G−i(x, x0), (14)

with branches of square roots defined by the condition Im
√

λ > 0. We assume further that
the restriction point is x0 = 0, if another point is not selected .

The above representation (13) of the domain of the adjoint operator was used in [1, 19].
Another representation of the domain of the adjoint Laplacian as a set of singular elements
described above (1) was suggested by Fermi [2] and is now commonly used in physical
literature, see for instance [3, 20]. It characterizes each element u from the domain of the
adjoint operator by dimensionless asymptotic boundary values A, B for |x| → 0:

u(x) =
Au

4π|x| + Bu + o(1). (15)
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The boundary form of l
+

0
on elements from the domain of the adjoint Laplacian is calculated

via integration by parts as

J (u, v) = 〈(l0)
+

u, v〉 − 〈u, (l0)
+

v〉 = B̄
u

A
v − Ā

u

B
v

. (16)

Due to the connection (8) between dimensional and dimensionless coordinates the corre-
sponding asymptotic values are connected by the dimensional factor k0 : A = Ak0 , B = B.

It is well known that two descriptions (13,15) of the domain of the adjoint Laplacian
are equivalent, [1]. They lie as foundations, respectively, for the classical von-Neumann and
for the symplectic version of the extension procedure for Laplacian. Planning to develop
the symplectic version for abstract operators we will derive the equivalence of both above
representations based on decomposition of elements of the defect N = Ni +N−i with respect
to the symplectic basis

W+(x) =
1

2
[G−i(x, 0) + Gi(x, 0)] =

l

l − iI
G−i(x, 0),

W−(x) =
1

2i
[G−i(x, 0)−Gi(x, 0)] = − I

l − iI
G−i(x, 0). (17)

We will present the von-Neumann formula for elements of the domain of the adjoint operator
in terms of the decomposition with respect to the basis W± :

u = u0 + ηu
+W+ + ηu

−W−, (18)

where u0 is an element from the domain of the closure l0 of the restricted operator and
ηu
± are complex coefficients. Deficiency elements G±i(∗, 0) are eigenvectors of the adjoint

operator with eigenvalues ∓i respectively. Then the elements W± are transformed by the
adjoint operator as:

l+0 W+ = W−, l+0 W− = −W+. (19)

Lemma II.1 The boundary form (16) of the adjoint operator l+0 depends only on compo-
nents ud = ηu

+W+ + ηu
−W−, vd = ηv

+W+ + ηv
−W− of the elements u, v in the defect. It is an

Hermitian symplectic form of the variables η± and can be presented alternatively as

J (u, v) = J
l
(ud, vd) = 〈l+0 ud, vd〉 − 〈ud, l+0 vd〉 =

1

4π
√

2

(
η̄u

+ηv
− − η̄u

−ηv
+

)
. (20)

The above variables η± are connected with the asymptotic boundary values A, B via the
transformation: 

 η+

η−


 =


 1 0

−1 −4π
√

2





 A

B


 . (21)

Remark Both pairs of variables η± and A,B are symplectic coordinates of the element u
in representations (15,18). The representation (i7) of the boundary form in terms of the
symplectic variables A,B is usually obtained, see for instance [1–3, 20] via straightforward
integration by parts. An alternative calculation based on (19) goes in line with an abstract
analog (Lemma II.2 below) of the above lemma.

Proof of the formula (20) is obtained via the direct application of the adjoint operator
l+0 to the above version (18) of the von-Neumann decomposition of elements from D+

0 in the
boundary form of the adjoint operator: 〈l+0 u, v〉 − 〈u, l+0 v〉 := Jl(u, v). One can easily see
that the boundary form depends only on the parts of the elements ud = ηu

+W++ηu
−W−, vd =
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ηv
+W+ + ηv

−W− in the defect, and can be calculated using (19), since l
+

0
u0 = l0u0 . Then due

to
∫

R3
|Gi(ξ, 0)|2d3ξ = 1/(4π

√
2) we obtain:

J (u, v) = 〈l+0 ud, vd〉 − 〈ud, l+0 vd〉 =
(
η̄u

+ηv
− − η̄u

−ηv
+

)
1/(4π

√
2). (22)

The second formula (21) is based on the asymptotic behavior of the non-perturbed Green
function for x → 0 :W+(x) = 1

4π|x| − 1
4π
√

2
+ o(1), W−(x) = − 1

4π
√

2
+ o(1). End of the proof.

Self-adjoint extensions of l0 were obtained in [1] via submitting A, B to the Fermi bound-
ary conditions B = γA. For general construction of extensions of densely defined operators
in terms of boundary forms see also [23]. Though the boundary forms (16) and (20) are
equivalent, our version (20) can be used for the whole class of all differential operators with
square-integrable Green-function, in particular for the Schrödinger operators in a bounded
domain with Robin boundary conditions, even restricted at the point x)0 on the boundary
boundary.

We choose the non-perturbed Hamiltonian of inner degrees of freedom ( we call it further
just inner Hamiltonian) as a J-self-adjoint operator in the inner Pontryagin space supplied
with an indefinite metric. After introducing the dimensionless spectral parameter λ the
zero-range model of two particles Hamiltonian will be obtained as an extension of the or-
thogonal sum l0 ⊕ H0 of the restricted Laplacian and the restricted inner Hamiltonian H
in the Pontryagin space L2(R

3
) ⊕ E

J
. The inner component E

J
is obtained via equip-

ping a finite-dimensional Hilbert space E, dimE = N , with an indefinite metric. Consider
two complementary orthogonal projections P± with respect to the conventional dot-product
〈∗, ∗〉 in E. Then the indefinite dot product in E (J-dot product) is defined as :

〈Jx̃, ỹ〉 = [x̃, ỹ] = 〈P+x̃, P+ỹ〉 − 〈P−x̃, P−ỹ〉.
Obviously [ᾱx̃, ỹ] = α[x̃, ỹ] = [x̃, αỹ].The space E supplied with the above J-dot product
is denoted by E

J
. For general properties of Pontryagin spaces see [21]. We sketch below a

symplectic version of the operator-extension technique in the inner component E
J
.

A bounded operator H is called J-symmetric (symmetric with respect to the above J-
dot product) if [Hx̃, ỹ] = [x̃,Hỹ]. In finite-dimensional sace each J-symmetric operator is
J-self-adjoint. We will apply the symplectic scheme to the bounded operator which is also
symmetric with respect to the conventional dot-product in E and commutes with J . We
assume that the spectrum of the J- symmetric operator H consists of a finite number of
simple positive eigenvalues λs = k

2

s
k
−2

0
, (H− λsI) es = 0 and H− iI is invertible. Choose a

normalized generating vector e ∈ E
J
, [e, e] = 1 ( which is non-orthogonal to each eigenvector

es of the operatorH, [e, es] := e
s 6= 0, s = 1, 2, . . . N). For selected vector e define the domain

DH0 of the restricted operator as DH0 = [H− iI]−1 (E
J
ª

J
{e}) and setH0 = H|DH0

, where

the J-orthogonal difference is denoted by ª
J
. The vectors e, e′ play roles of deficiency vectors

of the restricted operator at the spectral points ±i: [(H−iI)DH0 , e] = 0, [(H+iI)DH0 , e
′] =

0. Then the vectors e and e′ = H+iI
H−iI

e form a linearly-independent pair, with a positive angle
between them. The subspaces M

i
:=

∨
α
{αe} , M−i

:=
∨

α
{αe′} will play roles of the

deficiency subspaces.
At any regular points λ, λ̄ of the operator H the deficiency subspaces Mλ, Mλ̄ are also

one-dimensional, the defect is two-dimensional and the deficiency vectors are calculated as

eλ =
H + iI

H− λ̄I
e, eλ̄ =

H + iI

H− λI
e.

Generally the J-adjoint operator H+
0 is defined by the formula [H0x̃, ỹ] = [x̃,H+

0 ỹ] on
elements ỹ for which the J-dot product in the left hand side may be continued onto the whole
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space E as an “anti-linear” functional of x̃. For densely-defined operators this condition
implies (H+

0 + iI)e = 0, (H+
0 − iI)e′ = 0. For a bounded operator H we just define the

formal adjoint operator H+

0
on the defect M = M

i
+ M−i

by the above formulae. Then,
for complex values of λ, the deficiency vectors are eigenvectors of the corresponding formal
adjoint operator: (H+

0 − λ̄I
)
eλ = 0,

(H+
0 − λI

)
eλ̄ = 0.

An analog of the von-Neumann representation of the domain of the adjoint operator remains
true in Ponryagin space, see [21]. For elements from the domain of the formal adjoint
operator we have the representation x̃ = αe + βe′, x̃0 ∈ D0 with

H+
0 (+αe + βe′) = −iαe + iβe′.

M. Krasnosel’skii noticed, see [22], that the extension construction for non-densely defined
closed operators is actually developed in the defect M = M

i
+M−i

, and can be accomplished
similarly to von-Neumann construction, if the deficiency subspaces do not overlap. We obtain
a symmetric extension of the restricted operatorH0 on the defect via restriction of the formal
adjoint H+

0
|L onto some Lagrangian plane L ⊂ M where the corresponding boundary form

(25) vanishes. Thereafter an extension in the whole space is obtained as the a direct sum
H0 +H+

0
|L . We develop here the operator-extension construction with a pair of deficiency

subspaces assuming that dim E
J
≥ 2. In case dim E

J
= 1 the resulting formulae describing

the extended operator also remain true and may be verified via direct calculation.
Consider a new basis in the defect M = Mi + M−i which is similar to the above basis

(17) combined of the Greens-functions:

w+ =
e + e′

2
=

H
H− iI

e, w− =
e− e′

2i
=

−I

H− iI
e. (23)

Due to above definition of the formal adjoint operator we have:

H+
0 w+ = w−, H+

0 w− = −w+. (24)

We use the new basis {w+, w−} to represent elements from the domain of the formal adjoint
operator via new dimensionless symplectic variables ξ± which play a role similar to the above
pair η±:

x̃ = ξx
+w+ + ξx

−w−.

Lemma II.2 The boundary form of the (formal) adjoint operator in terms of the variables
ξ± is given by an Hermitian symplectic form :

K(x̃, ỹ) =
[H+

0
x̃, ỹ

]− [
x̃, H+

0
ỹ
]

= ξ̄x
+ξy

− − ξ̄x
−ξy

+. (25)

Proof exactly follows the pattern of the previous lemma (II.1). The vector e is normalized

in E
J
, hence the normalization constant similar to (4π

√
2)
−1

in (20) is equal to 1.
Note that the formula (25) can be interpreted as an “abstract formula of integration by

parts ” for the operator H+

0
. The symplectic version of the extension procedure allows to

obtain the J-self-adjoint extension of the formal adjoint operator via restriction of it onto the
Lagrangian plane Lγ in the defect defined by the boundary conditions as ξ− = γξ+ , γ = γ̄.
Then the construction of the J-self-adjoint extension in E

J
is accomplished via forming of

the direct sum H0 +H+

0
|Lγ

.
Our aim is the construction of the joint extension A

Γ
of l0⊕H0 . Consider the orthogonal

sum of operators l⊕H in the Pontryagin space L2(R
3
)⊕E

J
with elements U = (u, x̃), u ∈
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L2(R
3
), x̃ ∈ E

J
. Restricting both operators as above we obtain the symmetric operator

l0 ⊕ H0 with the defect N ⊕ M and the deficiency index (2, 2). We define the adjoint
operator as an orthogonal sum of “adjoint” operators l+0 ⊕H+

0 and calculate the boundary
form of it as a sum of boundary forms of the outer and inner components:

J(U, V ) = J (u, v) +K(x̃, ỹ) = (B̄uAv − ĀuBv) + (ξ̄x
+ξy

− − ξ̄x
−ξy

+),

where we choose the dimensionless symplectic variables A,B defined by (15) for the “outer”
boundary form. The boundary form J(U, V ) of the orthogonal sum of operators l+0 ⊕H+

0 in

the Pontryagin space L2(R
3
)⊕

J
E

J
is a symplectic Hermitian form. Hermitian extensions of

the operator A0 = l0 ⊕H0 (or Hermitian restrictions of the adjoint operator A0 = l+0 ⊕H+

0

is constructed via imposing proper boundary conditions on symplectic variables with an
hermitian matrix Γ: 

 B

−ξ−


 =


 γ00 γ01

γ10 γ11





 A

ξ+


 . (26)

The joint boundary form J(U, V ) vanishes on the corresponding Lagrangian plane L
Γ
⊂

M+N defined by the above boundary condition. All Lagrangian planes of the joint boundary
form may be constructed either with a help of various Hermitian matrices Γ, or obtained
from already constructed planes by proper J-unitary transformation. As previously, the
extended operator A

Γ
is obtained as the direct sum of the constructed restriction of the

adjoint A+

γ
= l

+

0
⊕H+

0
|LΓ

onto the Lagrangian plane LΓ in the defect and the closure of the

restricted operator , A
Γ

= (l0 ⊕H0) +A+

γ
.

III. THE SPECTRAL STRUCTURE OF AΓ AND THE POSITIVE SUBSPACE

One can show, combining [13, 22], that the constructed operator A
Γ

is a J-self-adjoint

operator in the Pontryagin space L2(R
3
) ⊕ E

J
. According to general description of the

spectral structure of self-adjoint operators in Pontryagin space, see [21], the operator A
Γ

has a positive invariant subspace H ⊂ L2(R
3
)⊕E

J
of a finite co-dimension in L2(R

3
)⊕E

J
,

where the part of the operator is a conventional self-adjoint operator with respect to the
positive metric P

H
[I ⊕ J ] P

H
. This self-adjoint operator may play a role of a conventional

quantum mechanical Hamiltonian of the constructed model. Normally, description of the
positive subspace is complicated task since the indefinite metric can be degenerated. In our
case we can provide an alternative description of the subspace by showing that it coincides
with the subspace of the absolutely-continuous spectrum of A

Γ
.

Assume that the extension procedure is developed as described in the previous section
based on a generating vector e = e

i
with use of the boundary conditions (26). The spectrum

of the constructed operator AΓ is defined by the classical Krein formula, see [9]. In our case
it coincides, see for instance [13], with singularities (the cut and the poles) of the scattering
matrix (33) and consists of a finite number of eigenvalues and Lebesgue absolutely continuous
spectrum filling the positive semi-axis 0 < λ < ∞ with infinite multiplicity. The generalized
eigenfunctions of the absolutely continuous spectrum of A

Γ
are obtained via fitting to the

above boundary conditions (26) the Ansatz for scattered waves :

Ψ
λ

=


 ψλ(x, ν)

ψ̃
λ


 =


 ei

√
λ(ν,x) + k0 f(

√
λ) ei

√
λ|x|
|x|

ξ+
H+iI
H−λI

e
,


 (27)
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with components ψλ, ψ̃λ
in the outer and inner spaces. The symplectic variables ξ± of

the inner component of the solution of the adjoint homogeneous equation are connected
ξ− = −Q(λ)ξ+ via the Krein Q-function of the inner Hamiltonian - an abstract analog of
the Weyl-Titchmarsh m-function, see [7]:

Lemma III.1 The Q-function for the operator H+

0
has the form:

Q(λ) =

[
e,

I + λH
H− λI

e

]
.

Proof of the statement, similarly to the proof of the corresponding statement in case of
positive metric in [10], is reduced to the calculation of symplectic coordinates of the defi-
ciency element eλ̄. Consider the J-orthogonal projections Pe = e][e and I − Pe onto the
one-dimensional deficiency subspace Ni and onto the complementary subspace E ª

J
Ni, re-

spectively. Then the solution of the adjoint homogeneous equation eλ̄ can be be presented
as:

eλ̄ =
H + iI

H− λI
e =

H
H− iI

e +
I

H− iI
e

[
e,

I + λH
H− λI

e

]
+

I

H− iI
(I − Pe)

I + λH
H− λI

e. (28)

The last term in the right-hand side is an element u0 from the domain of the restricted
operator H0, but the first two terms belong to the defect M so the whole linear combination
with use of the notation Q(λ) ≡ [e, I+λH

H−λI
e] can be presented as

H + iI

H− λI
e = w+ −Q(λ)w− + u0.

Hence the symplectic coordinates ξ± of eλ̄ are ξ+ = 1, ξ− = −Q(λ). End of the proof.
We consider an indefinite metric tensor J defined by a diagonal matrix, for instance

{Jss} = ±1, s = 1, 2, . . . N , commuting with a positive diagonal matrix H = {λs} , s =
1, 2, . . . dimE. Recall that J-normalized deficiency vector e ([e, e] = 1) has non-zero compo-
nents es with respect to the standard basis in E. Then the Q-function has the form

Q(λ) =
N∑

s=1

1 + λλs

λs − λ
Jss|es|2 =

N∑
s=1

1 + λλs

λs − λ
Ps, (29)

with real weights Ps = Jss|es|2 and poles of first order at the eigenvalues λs of H. In case of
positive metric Jss > 0 the Q- function belongs to Nevanlinna class.

The previous lemma allows us to solve the adjoint non-homogeneous equation and obtain
the Krein formula [9] for the resolvent of the J-self-adjoint extension of the symmetric
operator l0⊕H0 with the boundary condition (26). The scattered waves in s-channel may be
derived from it in a rather standard way, see [13]. One may also show, see for instance [3, 14],
that the boundary conditions (26) formulated for elements of the domain of the extension
A

Γ
are fulfilled for the corresponding scattered waves. We focus now on the straightforward

derivation of the expressions for the scattered waves {Ψ} based on the above Ansatz (27).
The symplectic variables in the ansatz for components of the scattered wave in the outer
and the inner spaces are:

B =
(
1 + i

√
λk0f

)
, A = 4πk0f, ξ− = −Qξ+. (30)

This gives, due to (26), the following equation for the amplitudes f, ξ+ :

 1 + i

√
λk0f

Qξ+


 =


 γ00 γ01

γ10 γ11





 4πk0f

ξ+


 . (31)

Solving this equation we obtain the expression for the amplitude f :
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Theorem III.1 The amplitude f , for real positive λ = k
2

k
−2

0
, is equal to

f(k) =

(
4πk0γ00 − 4πk0|γ01|2

γ11 −Q(λ)
− ik

)−1

. (32)

Proof follows from the previous discussion if the dimension of the inner space is ≥ 2,and

ξ+ = γ01

4πk0f

Q−γ11
. In case of the one-dimensional inner space the formulae (32) are verified by

the direct calculation.

Corollary The scattering matrix in s-channel connected to the amplitude f(
√

λ) via the
formula, see [14]:

S(
√

λ) = 1 + 2ik f(
√

λ) =
γ00 − |γ01|2

γ11−Q
+ i

√
λ

4π

γ00 − |γ01|2
γ11−Q

− i
√

λ
4π

, (33)

with the branch of
√

λ defined by the condition
√

λ > 0 for λ > 0. The dimensionless
eigenvalues λs of Aγ are found as poles of the scattering matrix on the spectral sheet =

√
λ >

0:

γ00 − |γ01|2
γ11 −Q(λ)

− i

√
λ

4π
= 0.

When considering the non-stationary scattering problem, see for instance [24], it is conve-
nient to use the complex conjugate scattering matrix, instead of (33). Non-pure-imaginary

zeroes of our scattering matrix S(
√

λ) sit in the upper half-plane
√

λ > 0, and the cor-
responding complex-conjugate poles - in the lower half-plane. Vice versa, the non-pure-
imaginary zeroes of the complex conjugate matrix sit in the lower half-plane

√
λ < 0, and

the corresponding poles sit in complex-conjugate points in the upper half-plane.
In the next section we consider zero-range models with scattering matrix approaching 1 at

infinity. For these models the scattering matrix is presented as a ratio of two finite Blaschke
products S(k) = S+(k) S−(k) with zeroes in upper and lower half-planes correspondingly:

S+(k) =
∏

l

k−k
l

k−k̄
l

. =k
l

> 0, S−(k) =
∏

n

k−κn

k−κ̄n
. =κn < 0. We proceed assuming that the

Scattering matrix has this form.
In the remaining part of this section we describe the minimal positive subspace of the

operator A
Γ
. In case of s-scattering, only eigenfunctions with spherically - symmetric outer

part differ from the non-perturbed exponentials. The whole absolutely-continuous subspace
is split orthogonally into the trivial part constituted by eigenfunctions with trivial inner
components and the complementary part Ha characterized by spherically-symmetric outer
components of the corresponding (generalized) eigenfunctions. Consider the restriction of
A

Γ
onto subspace Ha . The scattered waves from Ha are obtained via fitting an appropriate

ansatz to (26). This gives:

Ψ
k
(r) =




1
4πr

[
e
−ikr − S(k) e

ikr
]

ξ(k) H+iI
H−λI

e


 , (34)

S(k) coincides with (33) and ξ(k) = γ01

2i
√

λ
Q−γ11

f(k). Further construction of the positive

subspace is developed in Ha .

Theorem III.2 The sperically - symmetric subspace Ha of the absolutely- continuous spec-
trum of A

Γ
is positive, and the restriction of the operator A

Γ
onto that subspace is a con-

ventional self-adjoint operator which is equivalent to the multiplication by k
2

in L2(R).
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Proof We suggest an indirect proof of this statement based on analysis of the energy norm
associated with the wave equation utt +A

Γ
u = 0. Introduce the corresponding energy norm

on a dense linear set of all Cauchy data U = {u, ut} with both components from Ha :

U(t) =


 u

ut


 =

∫ ∞

−∞




1
ik

Ψ

Ψ


 e

ikt

h(k)dk, −∞ < t < ∞.

We can choose h = h− ∈ S
−1

+
m−H

2

− , with a rapidly decreasing at infinity outer func-
tion m−(k) in lower half-plane. Then both components of U(t) belong to the domain

of A
Γ
. The closure of

∨
t>0

e
ikt

S
−1

+
m−H

2

− in L2-norm coincides with L2(R) and gives the

spectral representation of the absolutely-continuous subspace. As usual, see [24], the evo-
lution of the above wave equation on the space of Cauchy data with the energy-norm
||U||2 = 1

2
{[Au, u] + [ut , ut ]} is energy-preserving. It can be presented as exp(iL) with

the corresponding matrix generator:

L = i


 0 −1

A
Γ

0


 .

The absolutely continuous spectrum of the operator L is simple on the whole real axis
k, and corresponding generalized eigenfunctions are two-component vectors

(
1
ik

Ψ, Ψ
)
. To

prove that the energy norm is positive, it suffice, due to the energy conservation, to verify
the positivity on elements U(t) for t → −∞. Note that, due to the special choice of h− ,the
parts of each component u, ut in the inner subspace vanish for large negative t, so that the
total energy norm coincides with one of the component of U in the outer space and is equal
to the standard energy norm for the wave equation. Hence it is positive for large negative t.
Then due to the energy conservation, the energy norm is positive on elements U(t) for each
t. Hence the generator L of the evolution is a self-adjoint operator in the space of Cauchy
data U with the positive energy. The square of it is defined on smooth elements by the
diagonal matrix in the space of energy-normed Cauchy data

L2

=


 A

Γ
0

0 A
Γ


 .

It can be extended by Friedrichs procedure onto the maximal domain in the energy normed
space. The square norm of the first component of the corresponding decomposition of the
Cauchy data coincides with the quadratic form of A

Γ
. The restriction of the energy norm

onto the second component ut of Cauchy data is still positive and equivalent to the L2 - norm
on kh− . Closure of the subspace of the second components of Cauchy data gives the subspace
of the absolutely-continuous spectrum ofA

Γ
. Hence the corresponding absolutely-continuous

subspace is positive, and the part of A
Γ

in it is a conventional self-adjoint operator.

IV. FITTING OF PARAMETERS FOR ZERO-RANGE MODEL

In this section we define the metric of the inner space, and evaluate the boundary param-
eters and the moduli of components of the deficiency vector in the finite-dimensional case
dim E = N , assuming that the spectrum of the inner Hamiltonian and the real values of the
scattering length and of the effective radius are given.
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The scattering matrix S(k) = exp 2iδ(k) can be presented as the Caley-transform of the
function cot δ(k):

S(k) =
cot δ(k) + i

cot δ(k)− i
= 1 + 2ikf(k). (35)

Hence the scattering amplitude f(k) is presented as a function of the scattering phase δ(k):

f(k) = [kcot δ(k)− ik]
−1

. (36)

Combining Eqs.(32), (35) and (36) one can find the S-scattering matrix in the form:

S(k) = 1 +
2ik

4πk0[γ00 − |γ01|2
γ11−Q(λ)

]− ik
=

F (k) + ik

F (k)− ik
, (37)

with

F (k) = 4πk0

[
γ00 − |γ01|2

γ11 −Q(λ)

]
= k cot δ(k). (38)

Here we used the above notation (29) and the dimensionless energy λ = (k/k0)
2

In this section we consider a special class of zero-range models for which the scattering
matrix tends to 1 at infinity. This implies

γ11 +
N∑

s=1

λsPs = 0, (39)

and the representation of the denominator in (38) as a ratio of two polynomials Pm ,Pn with
real coefficients , M < N :

D(λ) = γ11 −Q(λ) = −
N∑

s=1

1 + λ
2

s

λs − λ
Ps = Λ

NM

∏M

r=1
(λ− hr)∏N

s=1
(λ− λs)

:= Λ
NM

P
M

P
M

. (40)

Points {hr} sit in complex plane λ symmetrically with respect to complex conjugation. The
real coefficient Λ

MN
will be found later. Consider the Laurent series

D(λ) = Λ
NM

[
1

λ(N−M)
+

d
N−M+1

λ(N−M+1)
+ . . .

d
N

λN + . . .

]
, (41)

with d
l
= 0 for l = 1, 2, . . . , N −M − 1, d

N−M
= 1, and

D
−1

(λ) =
1

Λ
NM

∏N

s=1
(λ− λs)∏M

r=1
(λ− hr)

=
1

Λ
NM

[
λ

(N−M)

+ . . . + q1λ + q0 +
q−1

λ
. . .

]
. (42)

The real coefficients d
l
, q

l
are uniquely defined by the poles λs and zeroes hs of D. For

instance, integrating D
−1

on a large circle with proper weights z
−1

, z
−2

we obtain

q0 =
P

N
(0)

P
M

(0)
+

M∑

r=1

∏N

s=1
(hr − λs)

hr

∏
t6=r

(hr − ht)
, q1 =

d

dλ

(P
N

P
M

)
(0) +

M∑

r=1

∏N

s=1
(hr − λs)

h2

r

∏
t6=r

(hr − ht)
, (43)
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Comparing coefficients in front of powers of λ in (40, 41) we obtain a linear system for the

variables ps =
(
1 + λ

2

s

)
Ps :

N∑

1

(
1 + λ

2

s

)
λ

l−1

s
Ps = Λ

NM
d

l
, l = 0, 1, . . . , N − 1. (44)

. This system has Vandermond determinant, which is positive if the eigenvalues are enumer-
ated in increasing order W (λ1 , λ2 , . . . λN

) =
∏

s>t
|λs−λt | := W . The solution {ps} is unique

and is presented by the Cramer formula. Denote by W
s

NM
the determinant with the column(

1, λs , λ
2

s
, λ

3

s
, . . . λ

N−1

s

)
replaced by the column

(
1, d1 , . . . d

N−1

)
. Then the parameter Λ

NM

is defined from the normalization condition [e, e] =
∑N

s=1
Ps = 1, see lemma II.2 :

Λ
NM

=




N∑

s=1

(1 + λ
2

s
)
−1

W
−1

W
s

NM



−1

(45)

The role of fitting parameters will play :

1.The coefficients
r0

2
, 1

a
in front of the powers k

2
, k

0
in the Laurent expansion

F (k) = 4πk0

{
γ0 −

|γ01|2
D(λ)

}
= 4πk0

{
γ0 −

|γ01|2
Λ

NM

[
λ

(N−M)

+ . . . + q1λ + q0 +
q−1

λ
. . .

]
.

}

(46)

of the function F (k) at infinity, with λ = k
2
k
−2

0
.

2. The eigenvalues λ1 , λ2 , λ3 . . . λ
N

of the inner Hamiltonian.

3. The zeroes h1 , h2 , . . . h
M

of D(λ)

We assume that the above data are consistent in the following sense:

sign r0 = −sign Λ
NM

q1 (47)

Lemma IV.1 If the consistency condition (47) is fulfilled, then the boundary parameters

γst and weights Ps = Jss|es|2 of the model A
Γ

are defined in several steps:

1. Calculate the weights Ps = Jss|es|2 = Λ
NM

W
s
W

−1
(1 + λ

2

s
)
−1

via solving the system
(44).

2. Define the boundary parameters γ00 , |γ01|2, for given r0 , a from the equations:

r0

2
= −4πk

−1

0
|γ01|

2

Λ
−1

NM
q1 , −

1

a
= 4πk0

[
γ00 − |γ01|

2

Λ
−1

NM
q0

]
. (48)

3. Set γ11 = −Λ
NM

∑
s
λs W

s

NM
W

−1
(1 + λ

2

s
)
−1

.

Note that the poles hr of F are the points where the scattering matrix is equal to 1. In
real physical problems in 3-d space this is never observed for finite real energy. In [17] we
suggested extending of this observation to complex values of energy in form of the principle
of analyticity , assuming that F is analytic on the whole plane λ. In finite-dimensional case
this means that F is just a polynomial degree N , M = 0. The corresponding operator A

Γ
is
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called “the special zero-range model”. Arranging the eigenvalues of the inner Hamiltonian
in increasing order and denoting by Ws the Vandermond determinant with λs just omitted,
we obtain via direct calculation the following consistency condition:

sign r0 = sign Λ, where Λ = (−1)
n

Λ
N0

=

N∑

s=1

Ws

W
(−1)

s 1

1 + λ2

s

, (49)

and fit the model based on equations:

Λ =

n∑

s=1

Ws

W
(−1)

s 1

1 + λ2

s

, Ps =
Ws

W
(−1)

s Λ

1 + λ2

s

, |γ01|
2

=
r0 k0Λ

8πk0

∏N

s=1
λN

s

∑N

s
λ−1

s

,

γ11 +

N∑

s=1

λs Ps , −
1

a
= 4πk0


γ00 − |γ01|

2

N∑

s=1

Ws

W
(−1)

s 1

1 + λ2

s

N∏

s=1

λ
n

s

n∑

s

λ
−1

s


 . (50)

Physical meaning of the above formulae becomes more transparent if we return to dimen-
sional wave number k and spectrum k

2

s
= k

2

0
λs . In particular, the consistency condition (49)

can be presented as sign r0 =sign
∑N

s=1

(−1)
sQ

l6=s
|k2

s−k2

l
|

k
2N

0

k4

0
+k4

s

. This gives the following statement:

Theorem IV.1 For scattering systems which can be modelled by special zero-range poten-
tials the only fitting parameters are: the scattering length, the effective radius, and the spec-
trum of the inner Hamiltonian. The sign r0 of the effective radius is necessarily connected
to the spectrum of the inner Hamiltonian by the consistency condition. The components of
the metric tensor for those models are defined as Jss = (−1)

s
sign r0. Other essential pa-

rameters of the model like: boundary parameters γ00 , γ11 , |γ01|, and components |es|2 of the
deficiency vector are defined as functions of the scattering length a, effective radius r0, and
λs (s = 1, 2, . . . , n)

a =

(
−4πγ00k0 +

4π|γ01|2
k2N−1

0 Λ

N∏
s=1

k2
s

)−1

, r0 =
8π|γ01|2
Λ k

2N−1

0

(
N∏

t=1

k2
t

)
N∑

s=1

k−2
s . (51)

In particular, if the effective radius is positive, r0 > 0, then Λ > 0 and Jss = (−1)s.

Introducing the notations ε = 4πγ00k0, γ = 4πγ01|2 k
−2N+1

0
Λ
−1

we obtain for the function
F (k) the following representation:

F (k) = kcotδ(k) = ε− γ

N∏
s=1

(k2
s − k2). (52)

Sign of the effective radius is the same as the sign γ :

a =

(
−ε + γ

N∏
s=1

k2
s

)−1

, r0 = 2γ
N∑

s=1

∏

t(t 6=s)

k2
t . (53)

Corollary 2 Using (37,52) and above parameters ε, γ, we may obtain a convenient
representation for the scattering matrix S in terms of the resonance parameters ks:

S(k) = 1 +
2ik

ε− ik − γ
∏N

s=1(k
2
s − k2)

. (54)
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The total scattering cross-section is σ(k) = 4π|f(k)|2 or can be written in explicit form
(see next section) using equations (8) and (52). This expression for the scattering matrix
in s-channel describes the resonance scattering of particles with resonances defined by the
spectral properties of the Hamiltonian H of the inner degrees of freedom.

Re-normalization. We already proved that our resonance scattering model depends
only the scattering length a, effective radius r0, the spectrum ks (s = 1, 2, . . . , N) of the inner
Hamiltonian and the typical wave number. Now we introduce instead of the scattering length
and effective radius a new parameter a0 with dimension ([a0 ] = cm) and a dimensionless
parameter α by the formulae:

k0 := − 1

4πγ00a0

, α := −4π|γ01|2
Λ

(4πγ00)
2N−1 , (55)

Then the function F (k) = k cot δ(k) for our zero-range potential is:

F (k) = − 1

a0

− α

a0

N∏
s=1

(
a2

0k
2
s − a2

0k
2
)
. (56)

The effective radius and the scattering length can be found from (56) as first coefficients of

the polynomial F (k) = −a−1 + r0

2
k

2
:

r0

2
= αa0

N∑
n=1

N∏

s(s 6=n)

a2
0k

2
s , a =

a0

1 + α
∏N

s=1 a2
0k

2
s

. (57)

Then the parameter a0 can be interpreted as a non- re-normalized scattering length for
the zero-range potential without inner structure, which corresponds to α = 0. The above
equation connects the re-normalized scattering length a to the non-re-normalized scattering
length a0, taking into account resonance scattering.

Thus the function F (k) given by Eq. (56) depends on the typical wave-number and N +2
parameters: a0, α and ks, s = 1, 2, . . . N . Consequently, the non-re-normalized scattering
length a0, the dimensionless parameter α and the spectrum ks (s = 1, 2, . . . , N) of the
Hamiltonian define the scattering length a and effective radius r0 of the model.

Resonance cross-section. The “total” cross-section for spherically-symmetric scattering
is generally calculated as

σ(k) = 4π|f(k)|2 =
4π

|F (k)− ik|2 .

This gives due to (56) an explicit formula for total cross-section of the special zero-range
model:

σ(k) =
4πa2

0

1 + a2
0k

2 + 2α
∏N

s=1 (a2
0k

2
s − a2

0k
2) + α2

∏N
s=1 (a2

0k
2
s − a2

0k
2)

2 . (58)

One can see from (58,56) that the maxima of the total cross-section σ(k) are shifted from
the eigenvalues of the inner Hamiltonian. They can be interpreted again as re-normalized
eigenvalues of the inner Hamiltonian. The re-normalization is caused by the interaction
introduced via the boundary condition (26). Note that the final formula obtained via sub-
stitution of (56) into (58) is not a phenomenological formula, but an exact formula derived
for certain Hamiltonian. The corresponding solvable model has equal rights with other
quantum solvable models, but unlike them it may have resonances at positive energy, the
sign ± of the effective radius defined by the spectrum of the inner Hamiltonian via (49) and
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allows complete fitting of all parameters from the experimental data, thus prescribing them
a certain physical meaning.
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