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Abstract

We consider the asymptotics of the (p, q, r)-triangle groups as one
of the vertices goes to a cusp p → ∞. We introduce new coordinates
on the fundamental domain of the (p, q, r)-triangle group which in
the limit approach the natural coordinates on the (∞, q, r)-triangle
group and show that in these coordinates the fundamental solutions
on the (p, q, r)-triangle group approach the fundamental solutions on
the (∞, q, r)-triangle group. We use these coordinates to study how
eigensolutions in the co-compact case accumulate onto the continuous
spectrum in the non co-compact case.

1 Introduction

It is well known that a discrete subgroup Γ of PSL2(R) acts on the hyper-
bolic plane H via Mobius transformations [1, 8]. The quotient H/Γ of the
hyperbolic plane by this group action can be identified with the so called fun-
damental domain, F , of Γ, a subset of H which covers the hyperbolic plane
without any intersections under the action of Γ, H = ∪{γF̄ ; γ ∈ Γ}. Here
we consider triangle groups Γp,q,r which are generated by pairs of reflections
across the sides of the hyperbolic triangle ∆p,q,r with angles π/p, π/q and
π/r at the vertices, ([1], pg. 276). The p, q and r are positive integers with
1
p

+ 1
q

+ 1
r
< 1. The fundamental domain of Γp,q,r consists of the union of a

copy of ∆p,q,r with its reflection through any one of its sides.
The Γp,q,r are, for finite p, q and r, co-compact, ie. the fundamental domain
F is compact in the topology of H and consequently the spectrum of the
Laplace-Beltrami operator on F is discrete. If we allow one of the vertices to
become a cusp, for instance p→∞, then the fundamental domain becomes
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non-compact and the spectrum picks up a continuous branch on the interval
[1
4
,∞) [6]. Here we plan to study how the discrete spectrum of the Γp,q,r

approaches the various branches of the spectrum of Γ∞,q,r as p→∞ (here of
course we mean the spectra of the associated Laplace-Beltrami operators).
One approach to this question is to consider the Selberg zeta function ZΓ(s)
[3, 5, 6]. This function has so called non-trivial zeroes on the critical line
corresponding to the discrete eigenvalues, with multiplicity, of the associated
group Γ. Unfortunately, due to the complicated nature of the Selberg zeta
function there seems little hope of studying its convergence properties as
p → ∞. Moreover, the zeta function for the non co-compact triangle group
([6], pg. 153) has a pole at the centre of the critical strip s = 1

2
which is

absent for all the zeta functions of the co-compact triangle groups.
Another approach is to consider Weyl’s law which states that for co-compact
triangle groups ([6], pg. 159)

NΓ(T ) =
|F|
4π

T 2 +O(T log T )

where |F| is the hyperbolic area of the associated fundamental domain and
NΓ(T ) is the number of eigenvalues λi = 1

4
+ t2i with ti < T . In the non

co-compact case we have, for the modular group (p, q, r) = (∞, 2, 3) (and
its congruence subgroups), exactly the same asymptotics of the counting
function. Consequently, for a given energy, we expect the non co-compact
group and the co-compact groups which approach it to have approximately
the same number of discrete eigenvalues of lower energy (at least in the case
of the modular group). What then happen to the continuous spectrum, in
particular are there any discrete eigenvalues of the co-compact groups which
accumulate onto it? Weyl’s law does not preclude this, it just puts a finite
limit on the number of discrete eigenvalues of the co-compact group which
tend to points of the continuous spectrum as p → ∞—in particular the
discrete spectrum of the co-compact group may not become dense in the
continuous spectrum! That this is unlike the case of the Laplacean on an
interval tending to the line has probably something to do with the fact that
the fundamental domain of the non co-compact group has finite volume. For
non co-compact triangle groups other than the modular group the exact form
of Weyl’s law is not known, in particular it is not known whether the term
due to the continuous spectrum is dominated by the term due to the discrete
spectrum [6]. Nevertheless the asymptotic form is the same (it is just the
constant in from of the asymptotic which is unknown) so that as before there
is no possibility that the discrete spectrum becomes dense in the continuous
spectrum as p→∞.
Here we make a heuristic study of the asymptotics of the spectra of the
co-compact (p, q, r)-triangle. By taking hyperbolic polar coordinates about
the order p vertex we can expand the eigenfunctions of Γp,q,r in terms of
associated Legendre functions. Using these polar coordinates we can easily
find a coordinate system depending on p, (xp, yp), which approaches the
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usual coordinates in the upper half-plane model of the hyperbolic plane as
p → ∞. There are well known expansions in the upper half-plane model
for the eigenfunctions, both continuous and discrete, of the non co-compact
Γ∞,q,r. We compare these with our expansions for Γp,q,r in terms of (xp, yp)
and see that it is possible to get eigenfunctions which in the limit approach
the discrete eigenfunctions of Γ∞,q,r. Surprisingly it also appears that there
are eigenfunctions of Γp,q,r which approach the continuous spectrum of Γ∞,q,r

and moreover become dense in the continuous spectrum! This contradiction
with Weyl’s law can only be resolved if we assume that these functions are
not actually eigenfunctions, for instance they may be Green’s functions with
a logarithmic singularity at some point in the fundamental domain (we say
eigensolutions to distinguish them).

2 Expansion of eigenfunctions for the trian-

gle groups

2.1 Co-compact case

Given a co-compact (p, q, r)-triangle group we can write the Laplace-Beltrami
operator in terms of hyperbolic polar coordinates about the order p vertex
[6]

L ≡ −
(

(u2 − 1)
∂2

∂u2
+ 2u

∂

∂u
+

1

4(u2 − 1)

∂2

∂ϕ2

)
where u = cosh(ρ), ρ is the hyperbolic distance from the order p vertex

and ϕ ∈
[
− π

2p
, π

2p

)
is the angular coordinate—we assume ϕ = 0 corresponds

to the arc joining the order p and order q vertices. The following ansatz
ψ(u, ϕ) = P (u)e2npiϕ ensures that in neighbourhoods of the order p vertex
automorphy is satisfied. We see then that the solutions of

Lψ = s(1− s)ψ (1)

are given by P (u) = P np
−s(u), Q

np
−s(u), the associated Legendre functions [7].

Since the eigenfunctions are smooth ([6], pg. 58) we can immediately dis-
regard the Qnp

−s(u) which have order np poles or logarithmic singularities at
r = 0 ([2], pg. 163). This allows us to write the discrete eigenfunctions for
Γp,q,r in the even

ψp,+(z; s) =
∞∑

n=0

αp,n(s)P np
−s(u) cos(2npϕ) (2)

and odd

ψp,−(z; s) =
∞∑

n=1

βp,n(s)P np
−s(u) sin(2npϕ) (3)
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cases. Here the αp,n (βp,n) are found by the solution of an infinite dimen-
sional linear problem which is equivalent to the vanishing of the deriva-
tive of the eigenfunction (vanishing of the eigenfunction) on the bound-
ary arc from the order q vertex to the order r vertex. This problem only
has solutions for distinguished s = si, the eigenvalues, which lie in the set
si ∈

{
[0, 1]

⋃ {
1
2

+ iR
}}

or si(1− si) ∈ [0,∞).

2.2 Non co-compact case

We place the fundamental domain of the non co-compact (∞, q, r)-triangle
group on the upper half z-plane so that the cusp is at i∞, the order q vertex
is at i and the order r vertex lies on the vertical lines x = ±λ

2
. Simple

geometry [1] shows that

λ = 2
cos

(
π
q

)
+ cos

(
π
r

)
sin

(
π
q

) . (4)

The Laplace-Beltrami operator in this context is

L ≡ −y2

(
∂2

∂x2
+

∂2

∂y2

)
where z = x+ iy. We adopt the ansatz ψ(x, y) = K(y)e

2πinx
λ so that we have

automorphy in neighbourhoods of the cusp. Then, for n 6= 0, the solutions

of (1) are given by K(y) =
(

ny
λ

) 1
2 Is− 1

2

(
2πny

λ

)
,
(

ny
λ

) 1
2 Ks− 1

2

(
2πny

λ

)
, the Bessel

functions of imaginary argument [6, 7]. In this case we may disregard Is− 1
2

as it has exponential growth for large y. For n = 0 we get the two linearly
independent solutions K(y) = ys, y1−s both of which play a role (these
degenerate at s = 1

2
but that is not important here).

It is well known that in the case of a non co-compact group the spectrum
splits into three parts: the continuous, residual and cuspidal spectra [6]. The
cuspidal spectrum is discrete and is defined by the condition that integrals of
the eigenfunctions across horocycles are zero, ie. integrating on x ∈

[
−λ

2
, λ

2

]
gives zero. Expanding in Bessel functions this is just equivalent to the absence
of the n = 0 term giving

ψ+(z; s) =
∞∑

n=1

αn(s)
(ny
λ

) 1
2
Ks− 1

2

(
2πny

λ

)
cos

(
2πnx

λ

)
(5)

for the even and

ψ−(z; s) =
∞∑

n=1

βn(s)
(ny
λ

) 1
2
Ks− 1

2

(
2πny

λ

)
sin

(
2πnx

λ

)
(6)

for the odd cusp forms. Again the αn (βn) are solutions of an infinite di-
mensional problem which is only defined for distinguished values of s, the
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discrete eigenvalues, with si(1− si) ∈ [0,∞).
The eigenfunctions of the continuous spectrum are known as Eisenstein series
and in our case can be expanded in terms of Bessel functions as

E(z; s) = ys + φ(s)y1−s +
∞∑

n=1

γn(s)
(ny
λ

) 1
2
Ks− 1

2

(
2πny

λ

)
cos

(
2πnx

λ

)
(7)

(see [6] (3.20)). Here the spectral parameter lies in the interval s ∈
{

1
2

+ iR
}

or s(1 − s) ∈
[

1
4
,∞

)
The function φ(s) is known as the scattering matrix.

We note that in our case the Eisenstein series is an even function.
The Eisenstein series has poles in the interval

(
1
2
, 1

]
which form the residual

spectrum. The corresponding eigenfunctions can be written

ψr(z; s) = η0(s)y
1−s +

∞∑
n=1

ηn(s)
(ny
λ

) 1
2
Ks− 1

2

(
2πny

λ

)
cos

(
2πnx

λ

)
(8)

([6], pg. 90). We note that this is an even function which, since si ∈
(

1
2
, 1

]
, is

square integrable with respect to the hyperbolic measure on the fundamental
domain.
Evenness of the continuous and residual spectra follows from the symmetry
of the fundamental domain whereby every eigenspace can by decomposed
into odd and even parts. Only the even part will have a zero order, n = 0,
term. Consequently, the Eisenstein series and residual spectrum, which by
definition have non-zero integral across horocycles, must be even.

3 Coordinates in the co-compact case and the

limit p→∞
We introduce new coordinates on the fundamental domain of the (p, q, r)-
triangle group by

xp = λ
pϕ

π
, yp = exp (ρp − ρ) .

Here ρp is the hyperbolic distance from the order p vertex to the order q
vertex and is given by the hyperbolic cosine law [1]

cosh(ρp) =
cos

(
π
p

)
cos

(
π
q

)
+ cos

(
π
r

)
sin

(
π
p

)
sin

(
π
q

) . (9)

We note that xp ∈
[
−λ

2
, λ

2

]
and that at the order q vertex (xp, yp) = (0, 1).

Furthermore, in the upper half plane model we use to describe the fun-
damental domain of Γ∞,q,r the logarithm of the y-coordinate measures the
hyperbolic distance above i, the order q vertex, while yp measures the hyper-
bolic distance above the order q vertex for Γp,q,r.
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From these facts we see that, ‘in some sense’, (xp, yp) → (x, y) as p → ∞.
The precise sense of this convergence is not important, rather we are inter-
ested in whether the fundamental solutions for the (p, q, r)-triangle group
in terms of these coordinates approach the fundamental solutions for the
(∞, q, r)-triangle group. This is obvious for the angular or x-coordinate, the
case for the radial or y-coordinate is the subject of the following lemma:

Lemma 3.1 For n 6= 0 we have the asymptotic formula

(−1)np

(np− 1)!
P np
−s(u) =

2 sin(πs)

π

(ny
λ

) 1
2
Ks− 1

2

(
2πny

λ

)
+O(p−1) . (10)

For n = 0 and <s ≥ 1
2

we have two cases; if <s = σ > 1
2

p1−sP−s(u) =
Γ

(
s− 1

2

)
√
πΓ(s)

(πy
λ

)1−s

+O
(
p1−2σ

)
. (11)

For s = 1
2

+ it, t ∈ R we have

p1−sP−s(u) =
Γ(−it)

√
πΓ

(
1
2
− it

) (πy
λ

) 1
2
+it

p−2it +
Γ(it)

√
πΓ

(
1
2

+ it
) (πy

λ

) 1
2
−it

+

O(p−2) . (12)

Here

u =
1

2

(
eρp

y
+

y

eρp

)
and y is fixed independent of p.

We consign the proof to an appendix.
We see immediately from the first limit (10) that it is possible for the even
and odd eigenfunctions of the co-compact group (2,3) to go to the cusp
forms (5,6) of the non co-compact group. Likewise, from (11) we see that it
is possible for the even eigenfunctions of the co-compact group to go to the
residual eigenfunctions (8) of the non co-compact group.
The asymptotic (12) is more difficult to interpret as the limit p→∞ clearly
does not exist. We would like to know whether there are eigensolutions1—we
know by Weyl’s law that there are no, or very few, eigenfunctions—of the
co-compact groups (2) with the same zero order asymptotics

E(z; s) = ys + φ(s)y1−s +O(e−2πy)

as the Eisenstein series (7) in a given interval I of the continuous spectrum. It
is clear that there are eigensolutions filling the whole interval I, we may just
take the Green’s function, but it is not clear that there are eigensolutions with

1We recall that by eigensolutions we mean solutions of the eigenvalue equation which
are not smooth, eg. Green’s functions, so that they are not eigenfunctions.
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the same asymptotics as the Eisenstein series. From (12) these eigensolutions
occur when we have solutions 1

4
+ t2 ∈ I of

Γ(it)Γ
(

1
2
− it

)
Γ(−it)Γ

(
1
2

+ it
) exp (2it log p− log (π/λ)) = φ

(
1
2

+ it
)
.

It is clear from that as p → ∞ the solutions of this equation become dense
in the interval I.
In summary we conjecture that in the limit p → ∞ we have a dense set
of points on the continuous spectrum where the Greens function of the co-
compact group has the same asymptotics for large y as the Eisenstein series.
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Appendix: Proof of lemma

We begin by noting from (4,9) that

exp(ρp) =
λp

π
+O(p−1) .

As in the lemma we drop the subscript from yp so that

exp(ρ) =
λp

πy
+O(p−1)

or

u = cosh(ρ) =
λp

2πy
+O(p−1) .

The asymptotic (11) is an easy consequence of equation (7.6.3) in [7]

P−s(u) =
Γ

(
1
2
− s

)
√
πΓ (1− s)

1

(2u)s
F

(
1
2

+ s
2
, s

2
; 1

2
+ s; 1

u2

)
+

Γ
(
s− 1

2

)
√
πΓ (s)

1

(2u)1−s
F

(
1
2
− s

2
, 1

2
− s

2
; 3

2
− s; 1

u2

)
=

Γ
(

1
2
− s

)
√
πΓ (1− s)

(
πy

λp

)s
1

(1 +O(p−2))s

(
1 +O(p−2)

)
+

Γ
(
s− 1

2

)
√
πΓ (s)

(
πy

λp

)1−s
1

(1 +O(p−2))1−s

(
1 +O(p−2)

)
.

Here F is the hypergeometric function and in the second equality we use the
hypergeometric series which is clearly valid in the region under consideration.
Multiplying by p1−s

p1−sP−s(u) =
Γ

(
1
2
− s

)
√
πΓ (1− s)

(πy
λ

)s

p1−2s +
Γ

(
s− 1

2

)
√
πΓ (s)

(πy
λ

)1−s

+O(p−2)

7



we get (11,12).
Equation (10) can be derived from equation 8.777.1 in [4]

Pm
−s(cosh(r)) =

2mΓ
(

1
2
− s

)
√
πΓ (1− s−m)

sinhm(r)

e(m+s)r
F

(
1
2

+m,m+ s; 1
2

+ s; e−2r
)

+

2mΓ
(
s− 1

2

)
√
πΓ (s−m)

sinhm(r)

e(m+1−s)r
F

(
1
2

+m,m+ 1− s; 3
2
− s; e−2r

)
.

We denote m = np in the following and use the above asymptotics for ρ to
give

Pm
−s(u) =

1√
π

[
Γ

(
1
2
− s

)
Γ (1− s−m)

(πny
λm

)s

F
(

1
2

+m,m+ s; 1
2

+ s;
(

πny
λm

)2
)

+

Γ
(
s− 1

2

)
Γ (s−m)

(πny
λm

)1−s

F
(

1
2

+m,m+ 1− s; 3
2
− s;

(
πny
λm

)2
)]

+O(p−1) .

Here we have used the fact that

(
1−

(
πy
λp

)2
)np

= 1 + O(p−1). The terms

Γ(1− s−m), Γ(s−m) are manipulated using [7], equation (1.2.2), to get

(−1)m

Γ(m)
Pm
−s(u) =

sin(πs)√
π π

[
Γ

(
1
2
− s

) Γ(s+m)

Γ (m)ms

(πny
λ

)s

F
(

1
2

+m,m+ s; 1
2

+ s;
(

πny
λm

)2
)

+

Γ
(
s− 1

2

) Γ(1− s+m)

Γ (m)m1−s

(πny
λ

)1−s

F
(

1
2

+m,m+ 1− s; 3
2
− s;

(
πny
λm

)2
)]

+O(p−1) .

We consider just the first term in the brackets, the second is treated similarly.
Using the hypergeometric series [7], equation (9.1.1), this term can be written

Γ
(

1
2
− s

) Γ(s+m)

Γ (m)ms

(πny
λ

)s

F
(

1
2

+m,m+ s; 1
2

+ s;
(

πny
λm

)2
)

= Γ
(

1
2
− s

) (m)s

ms

∞∑
k=0

(
1
2

+m
)

k

mk

(m+ s)k

mk

1(
1
2

+ s
)

k
k!

(πny
λ

)s+2k

.

Here (m + a)k = Γ(m+a+k)
Γ(m+a)

and we have the well known asymptotic [7], pg.
15,

(m+ a)k

mk
= 1 +O(m−1) .

This gives us

Γ
(

1
2
− s

) Γ(s+m)

Γ (m)ms

(πny
λ

)s

F
(

1
2

+m,m+ s; 1
2

+ s;
(

πny
λm

)2
)

= Γ
(

1
2
− s

)
Γ

(
1
2

+ s
) ∞∑

k=0

1

Γ
(

1
2

+ s+ k
)
Γ(k + 1)

(πny
λ

)s+2k

+O(p−1)

=
πe

iπ
2 ( 1

2
−s)

cos(πs)

(πny
λ

) 1
2
Js− 1

2

(
2iπny

λ

)
+O(p−1)
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where Jν is the Bessel function. Similarly the second term gives us

Γ
(
s− 1

2

) Γ(1− s+m)

Γ (m)m1−s

(πny
λ

)1−s

F
(

1
2

+m,m+ 1− s; 3
2
− s;

(
πny
λm

)2
)

= −πe
iπ
2 (s− 1

2)

cos(πs)

(πny
λ

) 1
2
J 1

2
−s

(
2iπny

λ

)
+O(p−1)

so that the Legendre function becomes

(−1)m

Γ(m)
Pm
−s(u) =

tan(πs)√
π

(πny
λ

) 1
2

[
e

iπ
2 ( 1

2
−s)Js− 1

2

(
2iπny

λ

)
−

e
iπ
2 (s− 1

2)J 1
2
−s

(
2iπny

λ

)]
+O(p−1) .

On the other hand [7] we can write the K-Bessel function in terms of the
J-Bessel function as(ny

λ

) 1
2
Ks− 1

2

(
2πny

λ

)
=

√
π

2 cos(πs)

(πny
λ

) 1
2

[
e

iπ
2 ( 1

2
−s)Js− 1

2

(
2iπny

λ

)
−

e
iπ
2 (s− 1

2)J 1
2
−s

(
2iπny

λ

)]
which immediately gives us (10).
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