
BARELY BAIRE SPACES AND HYPERSPACES
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Abstract. We prove that if the Vietoris hyperspace F(X) of all non-
empty closed subsets of a space X is Baire, then all finite powers of
X must be Baire spaces. In particular, there exists a metrizable Baire
space X whose Vietoris hyperspace F(X) is not Baire. This settles a
problem of McCoy stated in [9].

1. Introduction

In this paper, all topological spaces are assumed to be infinite and at
least Hausdorff. Also, all product spaces are endowed with the Tychonoff
product topology. A space X is called Baire [8] if the intersection of any
sequence of dense open subsets of X is dense in X. Alternatively, this notion
can be formulated in terms of second category sets. The Baire category
theory has numerous applications in Analysis and Topology. Among these
applications are, for instance, the open mapping and closed graph theorems,
the Banach-Steinhaus theorem in Functional Analysis, the Ellis’ theorem on
joint continuity of separately continuous group actions of locally compact
groups on locally compact spaces [5], etc. Other applications of the Baire
category theory are related to the existence of particular sets of functions,
say the existence of a “big” subset of continuous functions on [0, 1] that
are nowhere differentiable, or the existence of a “big” subset of continuous
functions on [−π, π] whose Fourier series diverge on a dense subset of [−π, π].
On the other hand, still there are several interesting open questions about
Baire spaces themselves, see [1].

Several function spaces can be identified as spaces of subsets (i.e., graphs
of functions) endowed with a particular hyperspace topology. The Baire
category theory of hyperspaces has proven to be also very usefull, see, for
instance, [12] and [13]. In fact, what is usually happening here is to deter-
mine that the hyperspace of certain type is a Baire space. The present paper
deals with this particular question in the case of Vietoris hyperspaces. In
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what follows, for simplicity, by a hyperspace of a space X, we will mean the
family F(X) of all non-empty closed subsets of X endowed with the Vietoris
topology τV . Let us recall that a canonical base for τV is given by all subsets
of F(X) of the form

〈V〉 =
{
F ∈ F(X) : F ⊂

⋃
V, F ∩ V 6= ∅ for any V ∈ V

}
,

where V runs over the finite families of non-empty open subsets of X. In
the sequel, any subset D ⊂ F(X) will carry the relative Vietoris topology
τV as a subspace of (F(X), τV ).

The question whether F(X) of a Baire space X is still Baire is related
to the notion of barely Baire spaces. A Baire space X is barely Baire [6]
if there is a Baire space Y such that X × Y is not Baire. It has been an
open problem whether such spaces do exist. The first Baire space X whose
square X2 is not Baire, constructed under the Continuum Hypothesis, is
due to Oxtoby [11]. Then the example was improved to an absolute one by
Cohen [4] relying on forcing. Finally, Fleissner and Kunen [6] constructed
a metrizable Baire space X whose square X2 is not Baire in ZFC by direct
combinatorial arguments.

In [9], McCoy has studied hyperspaces of Baire spaces, and indicated that
the following problem would be of interest, see [9, page 140].

Problem 1.1. Let X be a metrizable Baire space such that X2 is not Baire.
Must F(X) be Baire?

There are several results concerning hyperspaces of Baire spaces (see,
for instance, [2, 3, 14]), but we were unable to find any reference about a
possible progress in the solution of Problem 1.1. The main purpose of the
present paper is to provide the negative solution of this problem by proving
the following theorem.

Theorem 1.2. Let X be a space. If F(X) is a Baire space, then all finite
powers of X must be Baire spaces.

Corollary 1.3. There exists a metrizable Baire space X such that F(X) is
not Baire.

Other possible consequences are demonstrated in Section 4. The next
section contains a preparation for the proof of Theorem 1.2. We would
like to draw the reader’s attention on Theorem 2.1, which may have some
independent interest. Finally, the proof of Theorem 1.2 will be accomplished
in Section 3.

The authors would like to express their best gratitude to Professor Warren
Moors for his valuable remarks to improve the statement of Theorem 1.2
from all Moore spaces to all Hausdorff spaces.
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2. Finite powers and hyperspaces of finite sets

For a space X and n < ω, we let Fn(X) = {S ∈ F(X) : |S| ≤ n}. Note
that Fn(X) is always a closed subset of F(X), and, in fact, F1(X) is naturally
homeomorphic to X. The latter fact means that the Vietoris topology is
admissible, see [10]. It is clear that we may look at Fn(X) as an “unordered”
version of Xn, and, in the light of this, our first step in the preparation for
the proof of Theorem 1.2 is not surprising. Here, we prove the following
natural result which may have some independent interest.

Theorem 2.1. Let X be a space, and let n ≥ 1. Then, Fn(X) is a Baire
space if and only if Xn is a Baire space.

The proof of Theorem 2.1 will rely on two other special sets as an interface
between Fn(X) and Xn, namely,

[X]n = {S ∈ Fn(X) : |S| = n} ,

and

D(Xn) = {(x1, . . . , xn) ∈ Xn : |{x1, . . . , xn}| = n},
where n ≥ 1. Here, we identify X1 with X, hence it makes sense to consider
D(X1), and clearly D(X1) = X1. Also, D(Xn) will always carry the relative
topology from Xn.

Now, we have the following two observations reducing the proof of Theo-
rem 2.1 only to the sets [X]n and D(Xn).

Proposition 2.2. Let X be a space, and n ≥ 1. Then, Fn(X) is a Baire
space if and only if [X]n is a Baire space.

Proof. Note that [X]n is a τV -open subset of Fn(X), because X is Hausdorff.
Hence, [X]n is a Baire space if so is Fn(X). Suppose now that [X]n is a
Baire space, and take τV -open dense subsets Vk ⊂ Fn(X), k < ω. Next,
set G =

⋂{Vk : k < ω}. Finally, take a finite family W of non-empty open
subsets of X, with 〈W〉 ∩ Fn(X) 6= ∅, and let us show that 〈W〉 ∩ G 6= ∅.
To this end, we distinguish the following two cases. If each W ∈ W consists
only of isolated points of X, then 〈W〉 consists only of isolated points of
F(X), so 〈W〉 ∩ Fn(X) ⊂ G. In the another case, some W ∈ W should
contain a non-isolated point of X, so H = 〈W〉 ∩ [X]n 6= ∅. However,
each Uk = Vk ∩ [X]n, k < ω, is open and dense in the Baire space [X]n.
Therefore, D =

⋂{Uk : k < ω} is τV -dense in [X]n. This finally implies that
∅ 6= H ∩D ⊂ 〈W〉 ∩ G, which completes the proof. ¤
Proposition 2.3. Let X be a space, and n ≥ 1. Then, Xn is a Baire space
if and only if D(Xn) is a Baire space.

Proof. Just like before, D(Xn) is an open subsets of Xn, hence D(Xn) is a
Baire space if Xn is Baire. To show the converse, we proceed by induction.
Namely, D(X1) = X1, so X1 is Baire if D(X1) is Baire. Then, suppose that
both Xn and D(Xn+1) are Baire spaces for some n ≥ 1, and let us show that
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Xn+1 is also a Baire space. So, let G =
⋂{Vk : k < ω} for some open dense

subsets Vk ⊂ Xn+1, k < ω, and let W ⊂ Xn+1 be a non-empty open subset.
Also, let πj : Xn+1 → X be the projection onto the jth-factor of the product
Xn+1, 1 ≤ j ≤ n+1. We distinguish the following cases. If W ∩D(Xn+1) =
∅, then there should be some 1 ≤ m ≤ n + 1 such that πm(W ) contains
an isolated point x ∈ X. Hence, there exists an open subset H ⊂ W , with
πm(H) = {x}. In this case, we let Y = {w ∈ Xn+1 : πm(w) = x}. Note that
Y is an open subset of Xn+1 because x is an isolated point of X, and it is
also naturally homeomorphic to Xn. On the other hand, each Uk = Vk ∩ Y ,
k < ω, is open and dense in Y . Hence, by assumption, D =

⋂{Uk : k < ω}
is dense in Y . So, ∅ 6= H ∩ D ⊂ W ∩ G. Consider finally the case when
T = W ∩D(Xn+1) 6= ∅. Observe that each Lk = Vk ∩D(Xn+1), k < ω, is
open and dense in D(Xn+1) because D(Xn+1) is open in Xn+1. Hence, by
assumption, R =

⋂{Lk : k < ω} is dense in D(Xn+1). Thus we get again
that ∅ 6= T ∩R ⊂ W ∩G, which completes the proof. ¤

To accomplish the proof of Theorem 2.1, we may now concentrate only on
the sets [X]n and D(Xn). This final equivalence is based on the following
probably known observation.

Proposition 2.4. Let X and Y be spaces, and let f : X → Y be an open
continuous surjection which is finite-to-one. Then, X is a Baire space if
and only if Y is a Baire space.

Proof. In fact, the one implication is trivial. Namely, if X is a Baire space,
then Y is also a Baire space, because f is open and continuous. Suppose
now that Y is a Baire space, and let G =

⋂{Vk : k < ω} for some decreasing
sequence of open dense subsets Vk ⊂ X, k < ω. Also, let W ⊂ X be a
non-empty open set. Then, each Uk = f(Vk ∩W ), k < ω, is open and dense
in H = f(W ) because g = f ¹ W : W → H is open and continuous. Hence,
by assumption, D =

⋂{Uk : k < ω} is dense in H because H is open in Y ,
and, in particular, there exists y ∈ D. Let Fk = g−1(y) ∩ Vk, k < ω. Then,
{Fk : k < ω} is a decreasing sequence of non-empty finite subsets because f
is finite-to-one (hence, g as well). Therefore, F =

⋂{Fk : k < ω} 6= ∅ which
implies that W ∩G 6= ∅. ¤
Proof of Theorem 2.1. Let X be a space, and let n ≥ 1. According to
Propositions 2.2 and 2.3, it suffices to show that D(Xn) is a Baire space
if and only if [X]n is a Baire space. Towards this end, consider the map
f : D(Xn) → [X]n defined by f ((x1, . . . , xn)) = {x1, ..., xn}, whenever
(x1, . . . , xn) ∈ D(Xn). Then, f is a continuous, open and finite-to-one
surjection, hence Proposition 2.4 completes the proof. ¤

3. Proof of Theorem 1.2

In what follows, we need the following terminology. Let σ and γ be
families of subsets of a space X. As usual, we say that σ is a refinement of γ
if any element of σ is a subset of some element of γ. Now, we shall say that
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σ is a strong refinement of γ if σ is a refinement of γ, and any non-empty
element of γ contains some non-empty element of σ. In fact, we will need
strong refinements to generate special Vietoris neighbourhoods. Let us draw
the reader’s attention that if σ and γ are finite families of non-empty open
subsets, then 〈σ〉 ⊂ 〈γ〉 if σ is a strong refinement of γ. Motivated by this,
to any finite family γ of open subsets of X we will associate the set SR(γ) of
all strong refinements σ of γ such that σ consists of open sets, and |σ| = |γ|.
Note that if γ is disjoint, then any σ ∈ SR(γ) is also disjoint, while 〈γ〉 6= ∅
implies ∅ 6= 〈σ〉 ⊂ 〈γ〉 for every σ ∈ SR(γ).

The following simple observation will be our basic tool to work with strong
refinements.

Proposition 3.1. Let X be a space, n ≥ 1, γ be a family of non-empty
pairwise disjoint open subsets of X, with |γ| = n, and let V ⊂ F(X) be a
τV -open set which is dense in [X]n. Then, there exists a σ ∈ SR(γ) such
that 〈σ〉 ⊂ V.

Proof. Follows from the fact that there exists a set S ∈ [X]n such that
S ∈ 〈γ〉 ∩ V. ¤

Lemma 3.2. Let X be a space, n ≥ 1, γ be a family of non-empty pairwise
disjoint open subsets of X, with |γ| ≥ n, and let V ⊂ F(X) be a τV -open set
which is dense in [X]n. Then, there exists a σ ∈ SR(γ) such that 〈τ〉 ⊂ V

for every τ ∈ [σ]n.

Proof. We proceed by induction. Namely, suppose that |γ| = n. Then, by
Proposition 3.1, there is a σ ∈ SR(γ) such that 〈σ〉 ⊂ V. Since τ = σ for
every τ ∈ [σ]n, this σ is as required.

Suppose now that our statement is true for all families which consist of
at most k non-empty pairwise disjoint open subsets of X, for some k ≥ n,
and take a family γ of non-empty pairwise disjoint open subsets of X, with
|γ| = k + 1. Next, take a T0 ∈ γ, and consider the family γ0 = γ \ {T0}.
Since |γ0| = k ≥ n, by our assumption, there exists a σ0 ∈ SR(γ0) such that
〈τ〉 ⊂ V, τ ∈ [σ0]n. Now we distinguish the following two cases. If n = 1,
then, by Proposition 3.1, there is σ1 ∈ SR({T0}) such that 〈σ1〉 ⊂ V. Hence,
in this case, we may take σ = σ0 ∪ σ1.

Suppose finally that n > 1, and let [σ0]n−1 = {τ1, . . . , τm} where τi 6= τj if
i 6= j. By induction, for every k ≤ m we will construct families λk ∈ SR(τk)
and µk ∈ SR(σ0 \ τk), and non-empty open subsets Tk ⊂ T0 such that
〈{Tk} ∪ λk〉 ⊂ V, Tk+1 ⊂ Tk, and λk+1 ∪ µk+1 ∈ SR(λk ∪ µk). Namely,
|{T0} ∪ τ1| = n, and, by Proposition 3.1, there exists a non-empty open
subset T1 ⊂ T0 and λ1 ∈ SR(τ1) such that 〈{T1} ∪ λ1〉 ⊂ V, while we can
take µ1 = σ0 \ τ1. So, suppose that λk, µk, and Tk have been already
constructed for some k < m. For convenience, let σk = λk ∪ µk, and

τ∗k+1 = {S ∈ σk : S ⊂ T for some T ∈ τk+1}.
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Note that τ∗k+1 ∈ SR(τk+1) because σk ∈ SR(σ0). Then, just like before
we can construct the required Tk+1 ⊂ Tk and λk+1 ∈ SR(τk+1), but now
using the family {Tk} ∪ τ∗k+1 instead of {T0} ∪ τ1. As for µk+1, we just take
µk+1 = σk \ τ∗k+1. This completes the induction.

We finally complete the proof by taking σ = {Tm}∪λm ∪µm. Obviously,
σ ∈ SR({T0} ∪ σ0) ⊂ SR(γ). Take a τ ∈ [σ]n, with Tm ∈ τ . Then, by
construction, τ ∈ SR({T`} ∪ λ`) for some ` ≤ m because Tm ⊂ Tk and
λm ∪ µm ∈ SR(λk ∪ µk), for every k ≤ m. So, 〈τ〉 ⊂ 〈{T`} ∪ λ`〉 ⊂ V. ¤

We now proceed to the proof of Theorem 1.2. So, let X be as in that
theorem, and let n ≥ 1. According to Theorem 2.1, it suffices to show
that Fn(X) is a Baire space. Take a countable family {Vk : k < ω} of
τV -open subsets of F(X) which are dense in Fn(X), and let us show that
G =

⋂{Vk : k < ω} is dense in Fn(X). To this end, let λ be a finite family
of non-empty open subsets such that 〈λ〉 ∩ Fn(X) 6= ∅. In case

⋃
λ is

finite, then 〈λ〉 consists only of isolated points of F(X), hence there exists
an S ∈ 〈λ〉 ∩Fn(X) which is an isolated point of F(X). Clearly, in this case
S ∈ G. If

⋃
λ is infinite, then 〈λ〉 ∩ [X]n 6= ∅ because 〈λ〉 ∩ Fn(X) 6= ∅.

Hence, there should exist a finite family µ consisting of non-empty pairwise
disjoint open sets such that |µ| = n and 〈µ〉 ⊂ 〈λ〉. In this case, for every
k < ω, we consider the collection Σk of all finite families σ consisting of
non-empty pairwise disjoint open subsets of X such that

(3.1) σ is a strong refiniment of µ, and 〈τ〉 ⊂ Vk for every τ ∈ [σ]n.

Next, we consider the τV -open sets

Uk =
⋃
{〈σ〉 : σ ∈ Σk}, k < ω,

and we are going to show that they are dense in 〈µ〉. Take k < ω and a
finite family ν of open subsets of X such that 〈ν〉 ∩ 〈µ〉 6= ∅. Since ν is
finite and |µ| = n, there now exists a finite family γ consisting of non-empty
pairwise disjoint open subsets of X such that |γ| ≥ n, and 〈γ〉 ⊂ 〈ν〉 ∩ 〈µ〉.
Since Vk is dense in [X]n, by Lemma 3.2, this now implies the existence of
a σ ∈ SR(γ) such that 〈τ〉 ⊂ Vk for every τ ∈ [σ]n. Thus, σ ∈ Σk, and
therefore ∅ 6= 〈σ〉 ⊂ 〈γ〉 ∩ Uk, so Uk is dense in 〈µ〉. As a result, we get
that D =

⋂{Uk : k < ω} is a τV -dense subset of 〈µ〉 because 〈µ〉 is itself
a Baire space being a τV -open subset of F(X). Therefore there exists an
F ∈ 〈µ〉 ∩D. Next, for every W ∈ µ pick a fixed point xW ∈ F ∩W , and
then set T = {xW : W ∈ µ}. Note that |T | = |µ| = n, and, in particular,
T ∈ Fn(X). Now, on one hand, for every k < ω, we can find a σk ∈ Σk,
with F ∈ 〈σk〉. On the other hand, we can define a special subfamily of σk

by letting τk = {S ∈ σk : S ∩ T 6= ∅}. Then |τk| = |T | = n because σk is a
pairwise disjoint strong refinement of µ, while |T ∩W | = 1 for every W ∈ µ.
Hence, according to (3.1), this implies that T ∈ 〈τk〉 ⊂ Vk for every k < ω,
so T ∈ G. That is, T ∈ 〈µ〉 ∩ G ⊂ 〈λ〉 ∩ G, which completes the proof. ¤
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4. Volterra spaces

A space X is Volterra if the intersection of any two dense Gδ-subsets of X
is dense in X. Clearly, any Baire space is Volterra. In fact, a space X which
contains a dense metrizable subspace is Baire if and only if it is Volterra [7].

According to Theorem 1.2, we have the following consequence.

Corollary 4.1. If X is a metrizable space such that F(X) is Volterra, then
all finite powers of X must be Baire.

Proof. Note that F(X) contains a dense metrizable subspace. For instance,⋃{Fn(X) : n = 1, 2, . . . } is a metrizable subspace of F(X). Hence, this
follows immediately by the mention result in [7] and Theorem 1.2. ¤
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