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1 Notations

Take Σ as a compact surface of genus g with constant curvature K. The
Gauss–Bonnet formula implies: −K×Area(Σ) = 4π(g−1). Below Σ will be
either the sphere S2 (with K = +1, g = 0), or a hyperbolic surface X (with
K = −1, g ≥ 2). If −∆Σ is the positive Laplacian on Σ, we associate with
it the ‘almost positive’ operator:

PΣ =

(
−∆Σ +

K

4

) 1
2

(1)
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where the square root is taken positive on each eigenspace where P 2
Σ is pos-

itive. In the hyperbolic case, denoting by {λn} the spectrum of −∆X and

by
{

ρn = (λn + K/4)1/2
}

the spectrum of PX , we recall that the first few

values λn + K/4 are negative (e.g., λ0 = 0) and for these values we agree for
instance that arg ρn = −π/2.
We denote by P the set of periodic, oriented, primitive geodesics of the hy-
perbolic surface X and by τ(p) the length of p ∈ P . The length spectrum of
all the periodic geodesics, primitive or repeated, is the set

{mτ(p)| p ∈ P , m ∈ N \ {0}} .

This spectrum is placed in duality with the spectrum of eigenvalues of PX

by Selberg’s trace formula [12, 8]

Tr h(PX) =
∞∑

n=0

h(ρn)

= (g − 1)

∫ +∞

−∞
h(ρ)ρ tanh(πρ) dρ +

∑
p∈P

∞∑
m=1

Rp,mĥ (mτ(p)) (2)

where

ĥ(τ) =
1

2π

∫ +∞

−∞
h(ρ)e−iτρ dρ

and Rp,m is the ‘hyperbolic weight’

Rp,m =
τ(p)

2 sinh(mτ(p)/2)
. (3)

In (2) the test function h(ρ) must be defined and analytic in some strip
|Im ρ| < 1

2
+ ε, in order for the series over the geodesics to converge, and

decreasing of order O
(
|ρ|−2−δ

)
as ρ → ∞, in order for the two other terms

to converge. Moreover, h(ρ) must be even.
The classical restrictions on the function h(ρ) can be weakened, as we will
show below, by using the analogy with Poisson’s Summation Formula,∑

n∈Z

h(n) = 2π
∑
m∈Z

ĥ(2πm) . (4)

2 The determinant formula [15, 7, 11, 14]

Poisson’s Summation Formula can be understood from the two classical for-
mulae for sinh(πκ)

sinh(πκ) = πκ
∞∏

n=1

(
1 +

κ2

n2

)
(5)

sinh(πκ) =
1

2
eπκ
(
1− e−2πκ

)
. (6)
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Supposing a little analyticity for h(ρ), we evaluate the integral

1

2πi

∫
C

h(−iκ) d log sinh(πκ)

taken on the contour of figure 1 by two different methods.
If we use (5) and the residue formula we immediately obtain the left-hand

Im κ

Re κ
{

C

Figure 1: Contour of integration.

side of (4). On the other hand, if we use (6) in the half-plane Re κ > 0 and
the symmetric formula in Re κ < 0 we get the right-hand side of (4). This
proof is ‘microanalytic’ in the sense that it is based on the decomposition of
the real distribution

∑
n∈Z δ(ρ− n) as the difference of the boundary values

of the analytic function −1/(2 tanh iπρ) as Im ρ → ±0.
Analogs of the formulae (5,6) for the Selberg case would arise by putting
h(ρ) = − log (ρ2 + κ2) in (2) (κ plays the role of a parameter)—were it
not for the fact that the formula written this way diverges since h(ρ) is
not O

(
|ρ|−2−δ

)
. However, it becomes convergent if we apply the operator

d/d(κ2) twice. It is then transformed into the classic trace formula for h(ρ) =
(ρ2 + κ2)

−2
which expresses the function Tr (P 2

X + κ2)
−2

.
If we introduce the generalised zeta function

ζΣ(s, a) = Tr (−∆Σ + a)−s = Tr

(
P 2

Σ −
K

4
+ a

)−s

(7)
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where Re s > 1 and a 6∈ R−, we see that we can remove the two differentia-
tions in κ2 thanks to the functional equation:

ζΣ(s, a) = s

∫ +∞

a

ζΣ(s + 1, a′) da′ . (8)

In particular, by applying (8) twice to

ζX

(
2, κ2 − 1

4

)
=

∞∑
n=0

(
ρ2

n + κ2
)−2

we get ∂
∂s

ζX

(
s, κ2 − 1

4

)∣∣
s=0

. Now, this by definition is − log det (P 2
X + κ2),

where det designates the functional determinant of an operator (or the zeta-
regularised determinant) [10].
After all calculations are completed, the trace formula regularised then ex-
ponentiated gives us:

det
(
P 2

X + κ2
)

=
(
eκ2

det (PS2 + κ)
)−(2g−2)

zX

(
1
2

+ κ
)

(9)

where

zX

(
1
2

+ κ
)

=
∏
p∈P

∞∏
k=0

(
1− eτ(p)(k+ 1

2
+κ)
)

, (Re κ > 1/2) (10)

is the Selberg zeta function [12].
The formulae (9,10) are similar to (5,6). The appearance of the operator PS2

on the sphere S2 in (9) will be explained below.

3 An extension of the trace formula [2, 3]

If we suppose that the test function h(ρ) is indeed even and analytic in
|Im ρ| < 1

2
+ ε, we can recover the classic trace formula (2) from (9,10) by

evaluating the integral

1

4πi

∫
C

h(−iκ) d log det
(
P 2

X + κ2
)

taken on the contour C of figure 2 in two different ways, by analogy with the
above proof of Poisson’s Summation Formula.

But the same reasoning can extend to functions h(ρ) having different
analyticity properties, simply by changing the integration contour! The
most interesting case is where h(ρ) is not even, but is analytic in a sec-
tor | arg ρ| < π

2
+ θ0, and the integration is along the contour C′ of figure 2.

Under very mild decrease assumptions on h(ρ) (just to allow some contour
deformations), we thus obtain a new trace formula:

∞∑
n=0

h(ρn) = (2g−2)

∫ +∞

0

h(ρ)ρ tanh(πρ) dρ+

∫ +∞

0

h−(κ) d log zX

(
1
2

+ κ− i0
)

(11)
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1/2

`

Figure 2: Contours of integration (κ = iρ).

where we have defined

h−(κ) =
1

2πi
(h(−iκ)− h(+iκ)) , | arg κ| < θ0 (12)

(the shift κ → κ− i0 in (11) corresponds to the convention: arg ρn = −π/2
if ρ2

n < 0).

4 A new interpretation of the trace formula

The extended trace formula (11) applies to the function h(ρ) = e−tρ. Thus
we obtain a formula for ΘX(t) := Tr e−tPX when Re t > 0

ΘX(t) = (2g − 2)

(
t−2 + 2

∞∑
m=1

(−1)m(t + 2πm)−2

)

+
1

π

∫ +∞

0

sin(tκ) d log zX

(
1
2

+ κ− i0
)

. (13)

The integral yields an odd meromorphic function of t with simple poles at
the points t = ±imτ(p). The corresponding residues are (1/2π)Rp,m (all of
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this follows from (10)). Poisson’s formula on a manifold actually predicts
these singularities which it situates at the lengths of the periodic geodesics
of the said manifold [4, 5].
The formula (13) thus establishes a meromorphic extension for ΘX(t) but now
also displaying double poles on the negative real axis at the points −2πm,
m ∈ N. We interpret these poles as the contributions of complex periodic
geodesics with lengths 2πim, m ∈ Z which appear through the change t → it
implying K → −K. Indeed, in the direction of imaginary time, the geometry
of X becomes the geometry of the sphere S2 for which the periodic geodesics
are well known. The sphere moreover admits an exact Poisson summation
formula

ΘS2(t) = Tr e−tPS2 = 2
∑
m∈Z

(−1)m(t− 2πim)−2 (14)

which strongly resembles the summation term in (13), as is made evident by
the functional equation

ΘX(t) + ΘX(−t) = (2− 2g)ΘS2(it) . (15)

These results confirm the hypothesis of Balian and Bloch [1] that the quan-
tum evolution can be formulated in an exact way by a resummation of terms
associated with real and complex classical trajectories. Here the quantum
problem is to find the spectrum of the Laplacian on X and the classical tra-
jectories are the periodic geodesics on the same surface. On the test functions
h(ρ) = e−tρ (parametrised by t > 0) Selberg’s trace formula revealed itself
to be a Poisson summation formula indexed by the real and complex periods
of the geodesic flow on XC. We can also describe these contributions of the
complexified flow as the manifestation of a 2-dimensional tunnel effect within
the problem. Otherwise, Balian–Bloch decompositions have only been effec-
tively achieved in one-dimensional cases, using ordinary-differential equation
techniques [13, 6]. Our interpretation of Selberg’s trace formula thus consti-
tutes the first hint in favour of a generalisation of [13, 6] to partial differential
equations.

5 The generalised zeta function

We briefly mention another application of formula (11), to generalised zeta
functions ζΣ(s, a) defined by (7). We will see that from the point of view
of their dependence on the variable s these functions become particularly
simple, in the case of constant curvature surfaces, if we evaluate them at
a = K/4, whereas the more traditional choice is a = 0 (Minakshisundaram–
Pleijel).
Indeed, starting with K = +1, ζS2(s, a) is expressed in terms of the Riemann
zeta function for (and only for) a = +1/4:

ζS2

(
s, +1

4

)
=
(
22s − 2

)
ζ(2s− 1) . (16)
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But it is equally true in the hyperbolic case (K = −1) that ζX(s, a) takes its
simplest form for a = −1/4; now, since a < 0, this result follows from the
extended trace formula (11) which gives:

ζX

(
s,−1

4

)
=

1− g

cos(πs)
ζS2

(
s, +1

4

)
+

sin(πs)

π

∫ +∞

0

κ−2s d log zX

(
1
2

+ κ− i0
)

(17)
(compare with [9] for the case a ≥ 0). We must understand (17) as an identity
linking two meromorphic extensions, that of ζX(s,−1/4) from Re s > 1, and
that of the Mellin integral from Re s < 1/2 ! The analog of (17) for the
sphere S2 consists of writing Poisson’s summation formula for ζS2(s, +1/4),
which restores Riemann’s functional equation for ζ(s).
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