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Abstract
Steinitz’s Theorem states that a graph is the 1-skeleton of a convex

polyhedron if and only if it is 3-connected and planar. The polyhedron
is called a geometric realization of the embedded graph. Its faces are
bounded by convex polygons whose points are coplanar.

A map on the torus does not necessarily have such a geometric
realization. In this paper, we relax the condition that faces are the
convex hull of coplanar points. We require instead that the convex
hull of the points on a face can be projected onto a plane so that the
boundary of the convex hull of the projected points is the image of the
boundary of the face. We also require that the interiors of the convex
hulls of different faces do not intersect. Call this an exhibition of the
map. A map is polyhedral if the intersection of any two closed faces is
simply connected. Our main result is that every polyhedral toroidal
map can be exhibited. As a corollary, every toroidal triangulation has
a geometric realization.
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1 Introduction

Steinitz’s Theorem [23] characterizes those graphs that are 1-skeletons of
convex polyhedra in 3-space (R3): they are the 3-connected planar graphs.
We call the polyhedron a geometric realization of the graph (precise defini-
tions of these and other terms are given in Section 2). Loosely speaking,
the vertices of the graph are represented by points in Euclidean 3-space, the
edges are straight line segments joining these points, all points in a face are
coplanar, the faces are convex, and distinct faces intersect only along their
common boundaries. Geometric realizations are used in rendering computer
graphics, where 3-dimensional structures are represented by points in space
with convex faces.

Suppose that we are given a graph embedded on a surface of higher
genus. When does this embedding have a geometric realization? The prob-
lem, restricted to triangulations, was first proposed by Grünbaum ([13],
Exercise 13.2.3), who conjectured that “Every closed orientable triangu-
lated 2-manifold without boundary can be embedded geometrically in three-
dimensional Euclidean space R

3” (see also [6]). This conjecture was recently
disproven by Bokowski and Guedes de Oliveira [4], who showed that a certain
triangulation of the complete graph K12 on a surface of genus 6 cannot be
realized geometrically. Brehm and Schild [5] showed that every triagulation
of the torus does have a realization in R

4.
In this paper we focus on graphs embedded on the torus, also called

“maps” on the torus. An interesting example is the geometric realization
in R

3 of the complete graph K7 embedded on the torus. This is commonly
attributed to Császár [8], who discovered it independently, and is known as
Császár’s Polyhedron. Reay notes it was also known to Möbius, and models
were given in Reinhardt [19]. For a popular account and details on how to
build a model, see [11, 26]. Altshuler and Brehm [2] found all realizations of
this polyhedron.

One of the results in this paper, Corollary 1.2, proves Grünbaum’s con-
jecture for triangulations of the torus. This follows up on work of Altshuler
[1], who found geometric embeddings of a large class of toroidal triangula-
tions; namely, those that had a special type of Hamiltonian cycle. Similarly,
Lawrenchenco (personal communication) also found geometric realizations
of those toroidal triangulations where deleting two vertices gives a set of
triangles that can be realized in the plane.

Some work has also been done on geometric realizations of toroidal maps
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that are not triangulations. For example consider the Heawood map, which
is the dual of the embedding of K7 on the torus. Figure 1 shows this map;
here and in subsequent figures with dashed borders the top side is to be
identified with the bottom side and the left side with the right so as to form
the torus. (The role of the dashed and heavy edges in this figure will be
explained in Section 7.) It has 14 vertices, each of degree 3, and each face
is bounded by a hexagon. Can we realize this map in 3-space such that for
each face all of the interior points are coplanar, and the interiors of the faces
do not intersect? The answer is yes, as found by Szilassi ([24], as reported
in [12, 27]).

Figure 1: The Heawood Map

The faces of Szilassi’s polyhedron are nonconvex. Reay [18] says “It may
be shown that no such geometric realization exists with convex hexagons
as faces.” For completeness, we briefly outline such a proof. Suppose we
had such a representation by convex faces. Let f1 be one of the faces, and
consider a representation in R

3 with f1 in the xy-plane. Any other face fj ,
adjacent to f1 lies entirely in the upper half-space with z ≥ 0, or entirely
in the lower half-space with z ≤ 0. Since any two of these faces intersect,
they lie, without loss of generality, in the upper half-space. Thus the entire
surface lies in one half-space of the plane containing f1. But this holds for
all faces, and so the resulting surface cannot be homeomorphic to a torus.

We are interested in representing a toroidal map where we keep a form
of convexity of the faces (as defined precisely in Section 2), but relax the
condition that the points in a face are all coplanar. The vertices of the
map are represented by points in R

3, the edges of the map by straight-line
segments, and the faces by the convex hull of their boundary vertices. We
require that each face has a “viewing direction” given by a vector v̄ such
that projecting onto the plane orthogonal to v̄ maps the boundary of the
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face bijectively onto the boundary of the convex hull of the projected points,
consistent with their orders. In other words, the face does not necessarily
have coplanar boundary vertices on the convex hull, but there is a projection
where it is represented with coplanar vertices and is convex. We call this
boundary cycle a “profile” of the polytope representing the face. We seek
to represent the toroidal map by points in space such that each face can be
individually profiled. Moreover, we require that for any two distinct faces,
the interiors of their convex hulls are disjoint. The idea is that the open disk
that is the face minus its boundary can be anywhere in the interior of the
convex hull of its boundary points. Call such a representation an “exhibition”
of the map.

We need one more concept before we give our main result. The face-
width of a map, fw(G), is min{ | C ∩ G | : C is a non-contractible cycle
in the surface}. A map is polyhedral if it is of face-width at least 3 and
the underlying graph G is 3-connected. (Here, the word polyhedral is being
used in its topological-graph-theoretic sense, and should not be confused with
geometric polyhedra.)

Theorem 1.1 Every polyhedral map on the torus can be exhibited.

A triangular face has three boundary vertices, so all points in their convex
hull are coplanar. Hence an exhibition of a triangulation is a necessarily a
geometric realization (see Proposition 2.2). This answers Grünbaum’s Con-
jecture affirmatively for toroidal triangulations:

Corollary 1.2 Every toroidal triangulation has a geometric realization.

This paper is organized as follows. In Section 2 we give our basic defini-
tions and terminology. In Section 3 we give exhibitions of two special maps.
These exhibitions not only illustrate our ideas, but are key in later proofs.
In Section 4 we extend the exhibitions of our two special maps to exhibitions
of vertex splittings of these maps. Section 5 shows how to take a profiled
face and extend the exhibition to include a map inside this face. Combining
these two sections, Section 6 shows that if a map G contains a surface minor
H of maximum degree 4, then an exhibition of H can be modified to an
exhibition of G. Section 7 shows that every toroidal map contains a vertex
split of one of our two special maps. We use this and our known exhibitions
to prove the main result in Section 8. We digress in Section 9 to discuss
how we constructed one of our key ingredients: an exhibition of the twisted
octahedron. Section 10 gives some conjectures and conclusions.
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2 Definitions and terminology

The graphs in this paper are simple and connected. We consider graphs
embedded on a surface; as is common, we require our maps to be cellular;
that is, S − G is a collection of disjoint open disks. We call such an embed-
ding a map. A map is circular if every face is bounded by a simple cycle.
Equivalently, the map is circular if its underlying graph is 2-connected and
no non-contractible cycle in the surface (not restricted to cycles in the graph)
intersects the graph in a single vertex. Fixing an orientation of the surface,
we can describe any face of a circular map by a cyclic order on its incident
vertices.

Recall that an embedding is polyhedral if it is 3-connected and of face-
width at least 3. Polyhedral maps have the property that the intersection of
any two closed faces is simply connected. Every polyhedral map is circular.

Let G be a given map. Form H from G by deleting edges and isolated
vertices from the graph G while maintaining the property that H is a map.
We call H a submap of G. If we in addition allow smoothing degree two
vertices of G, that is, replacing a path uvw of length 2 in G with a single
edge uw in H , then we call H a topological submap of G. If we also allow
forming a map H by contracting an edge of a map G, we call H a surface
minor of G.

We want to represent an embedding using vertices in 3-space, with the
edges and faces represented by the convex hull of the points representing
their incident vertices. We start with some terms about sets of points in R

3.
Let P be a set {x1, . . . , xk} of k points in n-space. The convex hull of P ,

denoted 〈P 〉, is the collection of all points of the form c1x1 + c2x2 + . . .+ ckxk

such that c1 + c2 + . . . + ck = 1, 0 ≤ ci ≤ 1. The convex hull is also called a
(n-dimensional) polytope. For example, the convex hull of three non-colinear
points in R

n is a triangle. Likewise, the convex hull of four non-coplanar
points in R

n is a tetrahedron.
A point is in the interior of the polytope 〈P 〉 if it is of the form c1x1 +

c2x2 + . . . + ckxk such that c1 + c2 + . . . + ck = 1, 0 < ci ≤ 1. The interior
of a set of non-coplanar points agrees with the interior in the usual topology
on R

3, and if the points are coplanar but not colinear, it is equivalent to the
interior in the usual topology on R

2.
Fix a cyclic ordering C = (x1, x2, . . . xk) of the points in P . We say that

C is a profile of 〈P 〉 if there exists a vector v̄ such that when we project
the points of P onto the plane perpendicular to v̄, the convex hull of the
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projected points contain each of the points on its boundary in the clockwise
order given by C. Intuitively, if we look at 〈P 〉 from the direction v̄, we see
the points occur in the clockwise order given by C. We call v̄ the viewing
direction for the profile. Observe that if C is a profile of 〈P 〉, then every
point of P occurs on the boundary of the polytope 〈P 〉.

Next consider a set of n points in 3-space, and a collection P1, P2, . . . , Pm

of subsets of these points. We say that the polytopes 〈Pi〉 are (pairwise)
non-overlapping if for each i, j, 〈Pi ∩ Pj〉 = 〈Pi〉 ∩ 〈Pj〉. In other words, the
collection is non-overlapping if the interiors of the polytopes are pairwise
disjoint. We will also say that a collection of profiles is non-overlapping if
the convex hulls of their underlying point-sets are non-overlapping.

We discuss how to represent a map on a surface by points in Euclidean
3-space R

3. A point assignment of a map G is an injection from V (G) to
R

3. When the point assignment is understood, we freely confuse vertices in
G with their associated points in R

3. A circular map G ⊂ S is exhibited by
a point assignment if each facial boundary cycle Ci gives a cyclic order that
is a profile of the points Pi, and if the 〈Pi〉’s are non-overlapping.

The main question we investigate is:

Problem 2.1 Which circular embeddings can be exhibited?

An important subclass of graph embeddings are triangulations, where
each face is bounded by a 3-cycle. For each face, its three incident vertices
lie in a common plane. The convex hull of these three points must lie in the
same plane. This gives the following result.

Proposition 2.2 A triangulation of a surface has an exhibition if and only
if it has a geometric realization.

3 Two special exhibitions

In this section we describe exhibitions of two particular toroidal maps – these
exhibitions will turn out to be crucial to our main result. We first define a
graph called a (3 × 3)-grid. The vertices are the elements of Z3 × Z3, where
Z3 is the cyclic group of order three; the edges join (i, j) to (i+1, j) and (i, j)
to (i, j + 1), for i, j ∈ Z3. This graph has a natural quadrilateral embedding
in the torus: it is depicted in Figure 2, where a vertex (i, j) is denoted ij.
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Figure 2: The (3 × 3)-grid

Figure 3: An exhibition of the (3 × 3)-grid
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Figure 4: The octahedron embedded on the torus

Proposition 3.1 The (3 × 3)-grid can be exhibited.

Proof: Consider the standard model of a torus, where a circle of radius
0 < r < R and center (R, 0) in the xy-plane is rotated around the y-axis in
3-space. We place the points equally spaced around this surface; specifically,
we use the coordinates

([R + r cos(
2πiθ

3
)] cos(

2πjφ

3
), r sin(

2πnθ

3
), [R + r cos(

2πnθ

3
)] sin(

2πnφ

3
))

for the point (i, j), where i, j = 0, 1, 2. The four vertices corresponding to
a face of a (3 × 3)-grid are coplanar. This gives our desired exhibition, as
shown in Figure 3.

We now describe our second special complex; we start with the graph of
the octahedron. The vertex set is {0, 1, 2, 3, 4, 5}, and the only edges not in
the graph are {i, i+3}, where the vertices are read modulo 6. The octahedron
embeds in the torus as shown in Figure 4. We call this embedding the twisted
octahedron. Observe that the cyclic permutation (0 1 2 3 4 5) acts transitively
on this map.

Proposition 3.2 The twisted octahedron can be exhibited.

Proof: The points 0,1,2,3,4,5 in the graph are mapped respectively to the
following points in 3-space:

(128, 0, 0), (33, 27, 37), (0, 0, 128), (0, 128, 0), (31, 37, 27), (0, 0, 0).
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It is tedious but routine to verify that this point assignment is the desired
exhibition.

The proof given, while correct, is unsatisfying. Where did these coordi-
nates come from? We show their derivation in Section 9 which provides an
alternate proof that they give an exhibition of the twisted octahedron.

4 Exhibitions and edge contractions

We now turn our attention to exhibitions of circular maps G and exhibitions
of circular maps H formed by contracting a single edge to a point. If G is a
graph embedded on a surface S and e is an edge of G that is not a loop, then
the edge contraction H = G/e has a natural embedding on S. We call this
map a surface minor of the original map. We believe the following is true.

Conjecture 4.1 Let G be a circular map and let H be a circular surface
minor formed by contracting a single edge of G. If H can be exhibited, then
G can be exhibited.

The idea is to take an exhibition of H and to modify it slightly at the
vertex representing the contracted edge to create an exhibition of G. This
seems to be difficult to do in general when the degree of the vertex repre-
senting the contracted edge is 6 or more, since modifying a single vertex of
H does not necessarily give an exhibition of G. However, we can prove the
conjecture in the following special case.

Theorem 4.2 Let G be a circular map, let H be a circular map formed by
contracting a single edge e incident with two degree 3 vertices of G. If H can
be exhibited, then G can be exhibited.

Proof: We label the relevent vertices, edges, and faces as shown in Figure 5.
Specifically, let u1 and u2 be the vertices incident with the contracted edge
e. Label the faces incident with an end of e by F1, F2, F3, F4 such that F1 is
incident with u1, F3 with u2, and F2, F4 are incident with both vertices. Let
ei be the edge incident with Fi and Fi+1. The surface minor H is formed by
contracting u1u2 to a single vertex u, and inherits the labeling of the incident
edges and faces, with u denoting the identification of u1 and u2.
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Figure 5: Contracting an edge to form a surface minor

Our goal is to modify an exhibition of H to make an exhibition of G. For
convenience we will call the point in 3-space by the same name as the vertex
in the graph.

Let Pi be the vertices of Fi, let Ci be the cycle profiling 〈Pi〉 in the
exhibition of H , and let v̄i be the viewing direction for the profile. We will
construct the exhibition of G by replacing the point u by two carefully chosen
points u1 and u2 at a small distance ε from u. All other points remain the
same, and the vectors v̄i remain the same. Replacing u by u1 and u2 in this
way will ensure that F1 and F3 can be profiled with viewing direction v̄1

and v̄3 respectively. The care comes in ensuring that F2 and F4 can still be
profiled with viewing directions v̄2 and v̄4.

In the exhibition of H , consider the projection of the profile C2 of 〈P2〉
onto the plane through u perpendicular to v̄2. We focus on the corner of
the convex polygon corresponding to u. Let �2 be the line in this plane
perpendicular to the angle bisector of this corner. (See Figure 6.) Observe
that if u is replaced by two points u1, u2 sufficiently close to u on �2, then
this new set of points is still the vertices of a convex polygon. Let R2 be
the plane containing �2 and an intersecting line with direction v̄2. We will
pick u1 and u2 in R2 so that they project sufficiently close to u so that the
projection is still a convex polygon.

Using the face F4 we proceed as in the preceeding paragraph, defining �4

and R4. The two planes R2 and R4 intersect in a line � containing u. We
will pick u1 and u2 on � close to u.

10



π(e2)

π(e1)

u

v̄2

l2

e1

e2

Figure 6: The line l2 in the plane defined by v̄2 and u

e3

l1

e1

e4

l

u2

e2

u1

u

R1

Figure 7: Choosing points to represent a split vertex

We turn our attention to the face F1. As before, define the plane R1.
The line � passes through R1 at the point u. By the construction of R1,
both e1 and e4 lie on the same side of R1. Pick the point u1 on � on this
side sufficiently close to u. Pick the point u2 on � on the other side of R1

sufficiently close to u (see Figure 7).
We show that these points give a profile of each face. We begin with

F2. Since u1 and u2 were chosen on � close to u, they project in the plane
perpendicular to v̄2 to points that form the hull of a convex polygon. Since
u1 is on one side of R3 and u2 is on the other side, the cyclic order of the
points along the hull of the convex polygon is the same as the cyclic order
along the boundary cycle of F2. Similarly, these points give a profile of F4.
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Finally, we note that the interior of distinct 〈Pi〉 are disjoint, which com-
pletes the proof.

A split twisted octahedron is a map embedded on the torus such that
we can contract a set of pairwise non-adjacent edges to obtain the twisted
octahedron. Define a split (3 × 3)-grid similarly. xsThe following corollary
summarizes the results of this section for use in the rest of the paper.

Corollary 4.3 If G is a split twisted octahedron or a split (3 × 3)-grid, then
G can be exhibited.

5 Planar patches in a profiled polytope

Consider a topological submap H of a map G. Each face f of H contains
a portion Gf (including the boundary of f) of the embedded G. Given an
exhibition of H with a particular face f , we want to extend this exhibition
to H ∪Gf . We do this by taking the vertices of Gf that are not vertices of H
and assigning them points in the convex hull of the points representing the
boundary vertices of f . In other words, we put Gf in the polytope formed
by the vertices on the boundary of f .

We begin with an examination of the structure of Gf . Consider a graph
G embedded in the plane with a simple cycle C bounding the outside face.
Suppose that the vertices of C are partitioned into major and minor vertices.
We say that the embedded graph is nearly 3-connected if a) it is 2-connected,
b) the only cut-sets {u, v} of size 2 are non-consecutive vertices in C, and
c) both components of G − {u, v} contain a major vertex. Figure 8 gives
an example of such a graph, where the major vertices are the corners of the
bounding polygon.

Let G be a map and let H be a circular submap. Fix a face f of H , let
Gf be the portion of the embedded G in f , and let the major vertices of Gf

be the vertices of of degree at least 3 in H .

Lemma 5.1 Let G be a 3-connected map, and let H be a circular submap.
Then G has a circular submap H ′ homeomorphic to H such that for each
face f of H ′, Gf is nearly 3-connected.

Proof: Since G is 3-connected and the boundary of f is a cycle, Gf is
2-connected. Moreover the only cut-sets of size two are non-consecutative
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Figure 8: A nearly 3-connected graph (the nonconvex face becomes convex
following the application of Proposition 5.2).

vertices {u, v} in C. However, it may not be the case that both components
of Gf − {u, v} contain major vertices. If not, call {u, v} a bad 2-cut. Pick
the submap H ′ of G homeomorphic to H that has the minimum number of
bad 2-cuts. We will show that this number is zero.

By way of contradiction, suppose that H ′ has a bad 2-cut. Let a be the
major vertex on the boundary of Gf closest to u, and let b be the major
vertex closest to v, where we allow the possibilities a = u and b = v. Let
[u, v] and [a, b] be the subpaths of the boundary cycle C of f , from u to
v and a to b respectively, not containing an internal major vertex. The
component of G − {u, v} not containing a major vertex is bounded by a
simple cycle C ′. Consider the map H ′′ formed from H ′ by replacing [a, b]
with ([a, b] − [u, v]) ∪ (C ′ − [u, v]). In other words, we remove the path
joining u, v in H ′ and replace it with the other half of C ′. Note that H ′′ is
homeomorphic to H ′.

The face in H ′′ corresponding to f now has one fewer bad 2-cut. Let f ′ be
the other face of H ′′ incident with [u, v]. Since G is 3-connected, there must
be a path from [u, v] to the other component of G−{a, b}. Hence {u, v} is not
a bad 2-cut in Gf ′ . It follows that H ′′ has fewer bad 2-cuts, a contradiction
of the minimality of H ′. Hence H ′ has no bad 2-cuts as claimed.

It follows that for each face f of H ′, Gf is nearly 3-connected, and the
lemma is shown.

Knowing the structure of Gf , we examine how to realize this map.
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Proposition 5.2 Let Gf be a nearly-3-connected planar map with k ≥ 3
major vertices and let C be the simple cycle bounding the outside face. Let
D be an arbitrary convex k-gon in the plane. Then Gf can be drawn so that
1) C corresponds to D, 2) the major vertices in C are the corners of D, 3)
minor vertices in C are evenly spaced between corners, and 4) every face is
convex.

Proof: If Gf is 3-connected, then the embedding exists by Tutte’s The-
orem [25]. This provides the base case for an induction on the number of
cut-sets of order two. By Condition b) of nearly 3-connected, any 2-cut {u, v}
is in C. Let G1 and G2 denote the components of Gf −{u, v} (there are just
two since u and v are in C). We place the vertices of C along D so as to
satisfy the first three conditions, and add the edge uv in the interior of D. By
Condition c) of nearly 3-connected, u, v and the major vertices in G1 form a
convex polygon. By induction, we embed (convexly) the subgraph induced
by the vertices of G1 and {u, v} (together with the edge uv) in this polygon.
(Here, the vertices u and v play the role of major vertices.) We do the same
for G2. Now, deleting the edge uv (if necessary, when it is not in G) gives
the desired embedding.

We next use this planar representation of Gf to find an exhibition of Gf

in the interior of a polytope that is a profile of its boundary cycle C.

Proposition 5.3 Let Gf be a nearly-3-connected planar map with k ≥ 3
major vertices and let C be the simple cycle bounding the outside face. Sup-
pose that there is a profile of the vertices of a polytope (or convex polygon)
〈P 〉 in the plane orthogonal to v̄ with C as the projected boundary. Then Gf

has an exhibition such that C is the projected boundary of 〈P 〉, and every face
of Gf has the same viewing direction v̄. Moreover, except for the degenerate
case that all of the points of 〈P 〉 are coplanar, the only vertices of G on the
boundary of 〈P 〉 are those in C, and the only edges on the boundary of 〈P 〉
are those either in C or edges uv on a 2-cut.

Proof: Let D denote the k-gon arising from the projection of C in direction
v̄ onto the plane perpendicular to v̄. We begin with the drawing of Gf in the
planar k-gon D given by Proposition 5.2. Let v be a vertex of this planar
drawing, and let �v be the line (with direction v̄) through v perpendicular to
the plane containing D. Now �v intersects the boundary of the polytope P
in exactly one point if v is in C, and in exactly two points otherwise. In the
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first case, we use that point v′ in our exhibition of Gf in P . In the second
case, we set v′ as the midpoint of the two points of intersection.

If F is the cycle bounding a face in the drawing of Gf in D, then the
polytope determined by the corresponding vertices of F obtained above has
a profile with viewing direction v̄. The polyhedra arising in this way from
two different faces do not have a point of their interiors in common; if so,
then it would project to a point in the interior of two different faces of Gf in
D. Finally, the only vertices on the boundary of 〈P 〉 are those corresponding
to vertices of C, and the only edges on the boundary are those with both
ends on C.

6 Surface minors of toroidal maps

In this section we examine the relation between exhibitions of a surface minor
H of a map G and exhibitions of all of G. Basically, we combine the results
of Sections 4 and 5 in a general easily applied form. Our goal is the following
theorem.

Theorem 6.1 Let H be a surface minor of G, where H is a circular map
and G is a polyhedral map. Suppose that H has maximum degree at most 4.
If H has an exhibition, then G has an exhibition.

Proof: We can assume that G does not contain any vertices of degree 2.
Since G contains H as a minor and H is of maximum degree at most 4, then
G contains a submap H ′ together with a collection of pairwise non-adjacent
edges e1, . . . , ek of H such that simultaneously contracting each ei in H ′ gives
a map homeomorphic to H . We are given that H has an exhibition, so by
repeated application of Theorem 4.2 H ′ has an exhibition.

Consider a face f of the embedded H ′. Let Pf denote the polytope that
is the convex hull of the points representing the boundary of f . Let Gf be
that portion of G that is embedded in a face f . By Lemma 5.1, Gf is nearly
3-connected. By Proposition 5.3, Gf can be exhibited in the interior of Pf ,
with the only portion of Gf on the boundary of Pf being either a portion of
the cycle bounding f , or a chord connecting two non-adjacent vertices u, v
on the boundary of f . In the latter case {u, v} is a cut-set of Gf .

Consider the point representation of the vertices of G created by Propo-
sition 5.3 applied to each of the faces of H ′. This point assignment satisfies
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most, but not all, of the requirements for an exhibition of G. Suppose that
we are given two faces f1, f2 of G that lie in different faces of H ′. Then the
interiors of the convex hulls corresponding to these faces are disjoint, since
the interiors of the corresponding polyhedra are disjoint in the exhibition of
H ′. Similarly, if f1, f2 lie in the same face of H ′, the interiors are disjoint by
Propostion 5.3.

Let f ′
1, f

′
2 be two adjacent faces of H ′. They share a common boundary

walk W . The vertices of Gf ′
1

and Gf ′
2

are evenly spaced along W , so any two
faces of G incident with an edge of W intersect in only that edge.

There cannot be two disjoint faces of H ′ that both contain a common
chord uv, since G does not contain multiple edges.

The only remaining possibility for two polytopes to intersect improperly
is if H ′ has an edge uv, and uv also occurs as a cut-set of size two in a face
not incident with that edge. For example, we refer the reader to Figure 4,
where the edge 23 appears as an edge in the twisted octahedron H ′, but also
might be a chord in the face 2134. Since G contains no parallel edges, the
edge uv of H ′ corresponds to a path W = v1v2 · · · vk in G, where u = v1 and
v = vk. An edge vivi+1 is incident with two faces f1, f2 of G, and the edge
uv is incident with faces f3, f4 of G. The convex hulls of say f1 and f2 both
contain the edge vivi+1, which cannot occur in an exhibition.

In this case we will perturb the points v2, . . . , vk−1 slightly so that there
is no point interior to W that also lies on the chord uv, maintaining that the
interiors of the convex hulls of different points stay disjoint. We do this by
perturbing a point at a time along the path W . We assume that each vertex
of W is of degree 3 in G, since we can replace any vertex of degree 2 by an
edge joining its two adjacent vertices. We show how to perturb v2. Once it
is perturbed, we can perturb v3, then v4, etc.

There are two cases to consider: either v2 is of degree 3 or more in both
f1 and f2, or it is of degree 3 or more in (say) f1 and degree 2 in f2. The
first case is easier. There is an ε1 such that perturbing v2 by at most ε1 gives
a exhibition of Gf1 . Similarly define ε2 for Gf2 . Now perturb v2 by some
ε < min{ε1, ε2}.

The second case is slightly more subtle. Since v2 is of degree 2 in f2, we
have to perturb v2 in a direction that does not make its incident face in Gf2

nonconvex. We perturb as shown in Figure 9 so that the vertex does not
move into the interior of the convex hull of the points representing f1. Such
a direction always exists.
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v3

v = vk

v = vku = v1

u = v1

v2 v3 · · ·

v2

Figure 9: How to perturb intersections

7 Finding submaps of toroidal maps

In earlier sections we have given exhibitions of the split twisted octahedra
and the split (3 × 3)-grids. We showed how such exhibitions can be extended
from submaps H to the entire map G. In this section we show that any
polyhedral map on the torus contains one of our special submaps (note that
there are circular maps that do not contain one of our submaps, for example a
subdivided (2×2)-grid). To illustrate the idea, the Heawood map in Figure 1
contains the split twisted octahedron submap. To see this, delete the dashed
edge in this figure, suppressing the resulting degree two vertices, and contract
the heavy edges.

We first need a preliminary lemma. It says, in essence, that if a graph
on the torus contains three disjoint noncontractible cycles in two different
directions, then it has a (3 × 3)-grid minor.

Lemma 7.1 Let G be a graph embedded on the torus. Suppose that G con-
tains three pairwise disjoint cycles C1, C2, C3 and three pairwise disjoint cy-
cles C ′

1, C
′
2, C

′
3. Suppose that there is a cycle C homotopic to C1 and C ′

homotopic to C ′
1 with |C ∩C ′| = 1. Then G has a (3 × 3)-grid as a topologi-

cal subgraph.
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Proof: It suffices to show that Ci ∩ C ′
j is simply connected for each i, j.

Pick the submap H of G with the total minimum number of components in
Ci ∩C ′

j . If Ci ∩C ′
j is not simply connected for some i, j, then there is a path

Pi in Ci and P ′
j in C ′

j such that Pi ∪ P ′
j is contractible. Choose Pi and P ′

j to
enclose the minimum number of faces of the map G. Replacing P ′

j with Pi

in C ′
j gives a submap that contradicts the minimality of H .

We can now present the main result of this section.

Theorem 7.2 Every polyhedral map contains either a split twisted octahe-
dron or a split (3 × 3)-grid.

Proof: Let G be a polyhedral toroidal map. By Schrijver’s Theorem [22]
any map on the torus of face-width r contains at least 	3r/4
 pairwise disjoint
non-contractible cycles; these cycles are necessarily homotopic. Here r ≥ 3,
so G contains two pairwise disjoint non-contractible cycles. Call these cycles
C1 and C2.

We next describe how to cut an embedding along a non-contractible cycle
C. Begin with a non-contractible cycle C = (v1, . . . , vk) of minimal length;
such a cycle can have no chords. A small neighborhood C is homeomorphic
to a cylinder; direct C so it has a left side and a right side. Replace each vi by
two vertices v′

i, v
′′
i , replace each edge uvi on the left side by uv′

i, each uvi on the
right by uv′′

i , and add in two cycles C ′ = (v′
1, . . . , v

′
k) and C ′′ = (v′′

1 , . . . , v
′′
k).

(See Figure 10.)
We cut along the cycle C1. The result is a planar graph with two distin-

guished faces, one corresponding to the left side of C1 and the other to the
right side. We picture it so that the first of these faces contains the origin
of the plane, and the second is the outside face. Place a new vertex 0 in
the interior of the first face and add edges from 0 to all vertice on the face’s
boundary cycle. Similarly add a new vertex ∞ in the outside face together
with edges from ∞ to every vertex on the outside face’s boundary. Call the
resulting Ḡ.

It is not hard to show that Ḡ is 3-connected. In particular, there exist
three internally-disjoint paths from 0 to ∞ by Menger’s Theorem [16]. Let
a′, b′, c′ denote the last vertex on these paths on the left side of C1, and
x′′, y′′, z′′ the first vertex (respectively) on these paths on the right side of
C1. Let a, b, c, x, y, z respectively denote the vertices in C1 corresponding
to a′, b′, c′, x′′, y′′, z′′. In particular, there are pairwise disjoint ax-, by-, and
cz-paths in G.
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Figure 10: Cutting along a non-contractible cycle

c) Case 3.

C2 C1 C2C1 C2

x

a

b

c c

a a

b

c

y

z

x x

y

z z

y

x2

y2

z2

b

c2

a2

b2

a) Case 1. b) Case 2.

C1

Figure 11: The three possibilities for the ax-, by-, and cz-paths in G
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We examine the cyclic order of a, b, c, x, y, z along C1. For convenience,
consider the directed hexagon formed from C1 by smoothing all other vertices
and directing by the cyclic order induced by (a, b, c). We allow the possibility
that some of {a, b, c} are equal to some of {x, y, z}. Without loss of generality,
there are three cases to consider (see Figure 11):

Case 1: The hexagon contains arcs xb, yc, za, including the possibilities
x = b, y = c, and/or z = a. In this case we get a split twisted octahedron
and the theorem is satisfied.

Case 2: The hexagon contains arcs ax, yb, zc and similar subcases. In this
case, G contains three non-contractible pairwise disjoint cycles. We will
examine this case later.

Case 3: The vertices appear in cyclic order (a, b, c, x, y, z), where possibly
c = x and z = a.

In this case, we begin again: Let a2, b2, c2 denote the last vertex on the
ax-, by-, and cz-paths on C2 (see Figure 11c)), and x2, y2, z2 the first vertex
(respectively) on C2. This time we cut along cycle C2 and connect 0 only to
the vertices a′

2, b
′
2, c

′
2 corresponding to a2, b2, c2 on the left of C2 and ∞ only

to vertices x′′
2, y

′′
2 , z

′′
2 corresponding to x2, y2, z2 on the right of C2 (producing

Ḡ).
We will show that there exist three edge-disjoint paths from 0 to ∞.

Suppose instead that there is a cut-set {u, v} of size two separating 0 and
∞ in Ḡ, and let G1 and G2 be the components of this cut containing 0 and
∞ respectively. Recall that there are 3 pairwise vertex-disjoint paths from 0
to C1, so C1 is not contained entirely in G2. Likewise, there are 3 pairwise
vertex-disjoint paths from ∞ to C1, so C1 is not contained entirely in G2. It
follows that u, v are on C1. No face incident with C1 is also incident with
either 0 or ∞. Hence the two faces incident with both u, v in Ḡ are not
incident with 0 or ∞. In particular, they are faces of the original toroidal
embedding of G. This contradicts either the fact that G is 3-connected or
contradicts that the face-width is at least 3. We conclude that there are three
vertex-disjoint paths from 0 to ∞. These three paths intersect C1 so as to
fall in either Case 1 or Case 2.

We now return to Case 2: G contains three non-contractible pairwise
disjoint cycles. Call these C1, C2, and C3. Again we cut along C1. Applying
the same logic as before, we either get a split twisted octahedron, or we get
three non-contractible cycles in a different homotopy class. In the latter case
Lemma 7.1 applies and we get a split (3 × 3)-grid as desired.

20



8 Proof of the main result

We combine the results of the previous sections to prove the main result,
given in Section 1.

Theorem 1.1: Every polyhedral map on the torus can be exhibited.

Proof: Theorem 7.2 shows that any polyhedral G has a submap H that is
either a split twisted octahedron or a split (3 × 3)-grid. Corollary 4.3 shows
that each such H has an exhibition. By Theorem 6.1 these exhibitions of H
extend to exhibitions of G. Our main result follows.

9 Exhibiting a twisted octahedron

We earlier described an exhibition of a twisted octahedron. The description
gave the specific points in 3-space, but left lacking the idea behind how we
found this exhibition. Discovering this exhibition involved an interesting
detour to 4-dimensional space R

4, which we describe here. We are heavily
indebted to Duke [9] and Altshuler [1], who pioneered the method combining
cyclic polytopes and Schlegel diagrams. A nice exposition on cyclic polytopes
is given in Grünbaum ([13], Chapter 4.7).

We begin with the curve of moments, which is the locus of points
(t, t2, . . . , td) in R

d. Consider any d distinct nonzero numbers t1, . . . , td. Let
M be the (d × d)-matrix whose ith row is given by the point coordinates
(ti, t

2
i , . . . , t

d
i ), i = 1, . . . , d. By Vandemonde’s Theorem, the determinate of

this matrix is equal to (t1t2 . . . td)Πi>j(ti − tj), and so is nonzero. This in
turn implies that the row vectors are linearly independent, and so the convex
hull of the d points (ti, t

2
i , . . . , t

d
i ) is a (d − 1)-simplex.

Consider any set of v distinct nonzero points on the curve of moments
in R

d. The convex hull of these points is a simplicial d-polytope, called the
cyclic polytope C(v, d) by Grünbaum. He relates the following result ([10],
see also [13] Section 4.8, and [14] Section 13.1.4) which identifies the facets
of this cyclic polytope.

Lemma 9.1 Gale’s Evenness Condition A simplex S is a facet of C if
and only if for every i, j, the ith and jth coordinates of C are separated by an
even number of points tk.
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Figure 12: A Schlegel diagram of a cube

We are interested in the case v = 6 and d = 4. We choose the six
points v1, . . . , v6 on the curve of moments generated by t = −3,−2,−1, 1, 2, 3
respectively. These correspond to the the vertices 1, 2, 3, 4, 5, 6 of our twisted
octahedron as labeled in Figure 4. The points corresponding to the six faces

{(1, 2, 4, 3), (2, 3, 5, 4), (3, 4, 6, 5), (4, 5, 1, 6), (5, 6, 2, 1), (6, 1, 5, 4)}

generate six 4-simplices. Each of these satisify Gale’s evenness condition, so
they are facets of the cyclic polytope. It follows that they form a geometric
realization of the twisted octahedron in 4-space (R4).

We now project from 4-space back to 3-space. We do this with a Schlegel
diagram ([21], see also [13] Sec. 3.3, and [14] Sec. 13.1.6), a type of stereo-
graphic projection. Let F0 be a facet of a d-polytope P in R

d. Pick a point
x0 just slightly outside of P near the facet F . More precisely, chose x0 such
that the only affine hull of a facet of P that separates x0 and P is that of the
facet F0. Project P onto the affine space generated by F0 by rays rooted at
x0. The result is called the Schlegel diagram of P based at F0. For example,
Figure 12 shows a Schlegel diagram of a standard cube in 3-space from any
of its faces.

The authors chose the simplex {v2, v3, v5, v6} for the role of F0. This
satisfies Gale’s Evenness Condition, so it is a facet of the cyclic polytope.
It is important not to choose a face of the twisted octahedron, because the
selected facet corresponds to the unbounded region of the Schlegel diagram.
We calculated the coordinates of this projection using Mathematica. These
coordinates were all rational valued. Scaling by the least common multiple
of their denominators gave the coordinates of Theorem 3.2.
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Figure 13: An interesting toroidal triangulation

10 Conjectures and conclusions

We begin with a series of comments about toroidal triangulations. If one
is interested only in toroidal triangulations, instead of arbitrary polyhedral
maps, the following proposition is helpful. It shows that we do not need to
consider embeddings of a split (3 × 3)-grid.

Proposition 10.1 Every toroidal triangulation contains a split twisted oc-
tahedron.

Proof: Lavrenchenko [15] found the 21 toroidal triangulations that are
minimal under the minor order; this was reportedly done in unpublished
work by Grübaum and Duke. It is straightforward to check that each of
these 21 maps has a twisted octahedron. If H is a surface minor of G and H
has a twisted octahedron, then G has a split twisted octahedron.

We offer the following stronger conjecture.

Conjecture 10.2 Every toroidal triangulation contains a twisted octahe-
dron.

It is tempting to conjecture an even stronger result: given two homo-
topic disjoint non-contractible cycles in a toroidal triangulation, there exists
a twisted octahedron that contains both cycles. However, this stronger state-
ment is false, as shown in Figure 13. The graph is K2,2,2,2. The two disjoint
non-contractible cycles are the horizontal 4-cycles.

We note that not every toroidal triangulation contains a split (3 × 3)-grid.
The toroidal embedding of the complete graph K7 is an example.
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Möbius [17] observed that the unique triangulation of the torus by K7 can
be realized by gluing together seven tetrahedron along some of their faces.
This motivates the following conjecture.

Conjecture 10.3 Every triangulation of the torus can be realized geometri-
cally by fitting together tetrahedra such that each vertex of a tetrahedron is a
vertex of the triangulation.

Altshuler and Brehm [3] showed that there is a toroidal map that is not
a Schlegel diagram of a 4-polytope. Hence the techniques of this paper may
not be enough to prove this conjecture, since these techniques rely on an
exhibition of the twisted octahedron as a Schlegel diagram.

What about surfaces other than the torus? Recall that Bokowski and
Guedes de Oliveira [4] showed that there is a triangulation of the surface of
genus 6 that has no geometric realization, and hence has no exhibition. It is
an easy modification of their example to find a trianguation of genus g for
each g ≥ 6 that has no geometric realization. The existence of such examples
is open for g between 2 and 5. We ask about the simplest open genus.

Question 10.4 Does every triangulation of the double torus have a geomet-
ric realization?

We turn our attention to non-triangulations. Note that for these maps
on the torus we needed both the embeddings of the split twisted octahedron
and of the split (3 × 3)-grid. In particular, the twisted octahedron does not
contain a split (3 × 3)-grid, and (3 × 3)-grid does not contain a split twisted
octahedron.

The situation is different for maps of large face-width.

Theorem 10.5 There is a number f(g) such that every 3-connected map
on the surface of genus g having face-width at least f(g) has a geometric
realization, in particular, it has an exhibition.

Proof: Nakamoto notes (personal communication) that for each fixed sur-
face, there is a cubic map H that has a geometric realization. By a result
of Robertson and Seymour [20] every map G of sufficiently large face-width
contains H as a surface minor. Since H is cubic, the map G must also contain
H as a topological minor. It follows that, by our methods, G has a geometric
realization, which is also an exhibition.
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The preceeding theorem is especially interesting for triangulatons. Having
shown that such a function f(g) exists for general polyhedral maps, it is
natural to ask the following.

Question 10.6 What is its asymptotic behavior of f(g)? Could it be con-
stant?

We believe the answer to the second question is no.
Finally, we consider the nonorientable surfaces. Triangulations of these

surfaces do not have geometric realizations, since they do not embed in R
3.

However, suppose that we remove the interior of one face from a triangulation
of the projective plane. The result is a triangulation of the Möbius band.
Not every triangulation of the Möbius band has a geometric realization in
R

3, more strongly, they may not have geometric immersions (allowing self-
intersections) [7].

Question 10.7 Which triangulations of the Möbius band have a geometric
realization?

For other unsolved problems along these lines see Reay [18].
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