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Abstract

A solvable model corresponding to a given quantum network is
described in [21] without an explicit description of how to fit the pa-
rameters of the solvable model. Here we give a procedure to fit these
parameters so that the solvable model reproduces the important fea-
tures, viz. the scattering matrix for the physically relevant energies, of
the quantum network, subject to the non-vanishing of a determinant.

1 Introduction

The current interest in quantum networks is motivated by the design of
electronic devices at quantum scales with the objective of manufacturing
networks with prescribed transport properties. The literature in this area is
extensive with many studies into the mathematical aspects of such problems
[1, 2, 5, 6, 7, 8, 11, 14, 15, 12, 13, 17, 18, 19, 21, 23, 25, 24, 22, 26] as well
as explicit attempts at the actual design of networks with given scattering
properties [3, 4, 9, 10, 16, 20, 27]. We do not make any claim for complete-
ness of our bibliography.
In [21] the authors describe how to associate with a given quantum network a
solvable model with the same scattering properties at physically relevant en-
ergies. However, it is not shown that the desired solvable model exists, rather
some conditions are found which this solvable model has to satisfy. Here we
show (subject to the non-vanishing of a determinant) that the desired solv-
able model can always be constructed and give the explicit construction. We
start with a brief description of the quantum network and associated solvable
model proposed in [21]. Our notation is the same as, or a simplified version
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of, the notation in [21].

2 The Quantum Network

The quantum network consists of a connected set of compact domains {Ωi}
and finite and semi-infinite channels {ωj} lying in the plane Ω =

⋃
i Ωi

⋃
j ω

j ⊂
R2. The channel ωj has straight edges and constant width δj and is connected
to one compact domain (if it is semi-infinite) or two compact domains (if it is
finite). The boundary arc γj

i between Ωi and ωj is linear and at right angles
to the edges of ωj. We denote by Γ =

⋃
i,j γ

j
i the set of boundaries.

We consider the spectral problem on the network

Lψ ≡ −∆ψ + V ψ = λψ

ψ|∂Ω = 0

where the potential V : Ω 7→ R is real and assumed constant on the channels
V |ωj ≡ Vj = const.
By the Glazman splitting technique we see that the continuous spectrum,
regardless of the form of the compact part of the network, consists of an
infinite union of semi-infinite intervals, one for each mode transverse to the
channel, and of multiplicity equal to the number of semi-infinite channels.
It is assumed that the Fermi energy Λ is in the continuous spectrum. The
the authors of [21] define the ‘intermediate operator’ LΛ in terms of special
boundary conditions at Γ which depend on the Fermi energy.
Then the Dirichlet to Neumann map for this intermediate operator DNΛ(λ)
is calculated and it is shown that the scattering matrix is given in terms of
this operator by ([21], equation (24))

S(λ) = −
(
DNΛ − i

2µ‖
K+

)−1(
DNΛ +

i

2µ‖
K+

)
. (1)

Here µ‖ is a constant and K+ is a simple function of the spectral parameter.
For the purposes of approximation by a solvable model the authors use the
so called ‘essential part’ DNΛ

T of the Dirichlet to Neumann map obtained
by only considering eigenvalues in a band around the Fermi energy of width
proportional to the temperature. This operator has kernel ([21], equation
(48), although there is some discrepancy with equation (35))

DNΛ
T =

NT∑
l=1

1

λl − λ

∣∣∣∣P+
∂ϕl

∂n

〉〈
P+

∂ϕl

∂n

∣∣∣∣ .
Here the ϕl and λl are the eigenfunctions and eigenvalues on the compact
part of the network, ∂ · /∂n is the normal derivative and P+ is a projection
onto a finite dimensional subspace on Γ, related to the finite multiplicity of
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the continuous spectrum at the Fermi energy. Consequently, this ‘essential
part’ of the Dirichlet to Neumann operator is a finite dimensional operator,
ie. a matrix.
Consider an approximation to the scattering matrix obtained by using this
simpler operatorDNΛ

T in (1). One of the aims of [21] is to construct a solvable
model which has the same scattering matrix as this approximate scattering
matrix. Some conditions are found for this construction to proceed but it is
not show that it is always possible to construct the desired solvable model.
Here we will show (modulo the non-vanishing of a determinant) that it is
always possible to construct a solvable model with the desired properties.

3 The Solvable Model and Fitting Parame-

ters

In [21] the authors approximate the quantum network by a (one-dimensional)
graph consisting of n semi-infinite rays and a single vertex with a finite
dimensional operator A at the vertex. The set of finite dimensional vectors
and eigenvalues {

P+
∂ϕl

∂n
, λl ; l = 1, . . . , NT

}
(2)

are regarded as given data from the quantum network. Following [21] the
vectors P+∂ϕl/∂n are defined to be elements of the n-dimensional1 vector
space E+.
We denote by ` =

⊕n − d2

dx2 the ‘Schrödinger’ operator on the rays of the
graph acting on the Hilbert space H =

⊕n L2[0,∞). We denote by EA = CN

the ‘abstract’ finite dimensional Hilbert space at the vertex on which the self-
adjoint matrix A = A∗ acts. These are clearly both self-adjoint operators in
their respective Hilbert spaces.
We restrict ` to a symmetric operator `0 = `|D0

acting on functions disap-

pearing near the ‘origins’ (of the L2[0,∞)).
We also restrict A to the domain D0 ≡ (A− iI)−1EA 	 Ni where Ni, the
deficiency subspace with dim(Ni) = d, is chosen in the construction of the
solvable model. A technical requirement is that N−i ∩Ni = ∅ where

N−i =
A+ i

A− i
Ni ,

ie. the deficiency subspaces do not intersect. For this to hold we need at
least 2d ≤ N .
Our aim is to find a self-adjoint extension of the symmetric operator

A0 = `0 ⊕ A0 (3)

1From [21] we see that the dimension of these vectors is at least the number of semi-
infinite channels of the network.
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which has the same scattering matrix as the network in the desired energy
range.
This procedure of restricting then extending the operator to a self-adjoint
operator with desired properties is described in some detail in [26, 21]. In
summary the scattering ansatz for the solvable model ([21], after equation
(43)) takes the form

Ψ =

(
e−iK+xν + eiK+xSν

A+i
A−λ

ξ

)
where ξ are the components of Ψ in the deficiency subspace. We denote by β
the self-adjoint boundary conditions for the extension Aβ of (3) (to be pre-
cise, in this report β is used to denote the off diagonal part of the boundary
condition matrix). These boundary conditions relate Ψ and its derivative at
the origin allowing the authors of [21] to solve for the scattering matrix in
terms of β, A and the deficiency subspaces. This gives theorem 5.1 of [21]
which describes the solvable model in terms of the set (2) of given data from
the quantum network. Our formulation of this theorem follows the formula-
tion in [21] closely although we have omitted the last two sentences are they
are not strictly relevant to our discussion.

Theorem 5.1 The constructed operator Aβ is a solvable model of the quan-
tum network on the essential interval of energy iff: the dimension of the
space EA coincides with the number of eigenvalues on the essential interval
of energy N = NT ; the eigenvalues λ′l of A coincide with the eigenvalues of
the intermediate operator on the essential interval of energy λ′l = λl so that

A =

NT∑
l=1

λl |el〉 〈el| ;

and there exists a deficiency subspace Ni of A0, the associated orthogonal
projection Pi onto Ni, and an operator β : Ni 7→ E+ such that for the or-
thonormal basis of eigenvectors el of A

P+
∂ϕl

∂n
= βPiel (4)

for l = 1, . . . , NT .

Note: the matrix β, although associated with the self-adjoint boundary con-
ditions, is not necessarily self-adjoint because it is the off diagonal block of
the boundary condition matrix.
Note: as noted above the dimension of Ni has to be less that or equal half
the dimension of EA, 2d ≤ NT , otherwise there is no possibility that the
intersection of the deficiency subspaces is null. The condition of null inter-
section is expressed below as the non-vanishing of a determinant; however, if
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this determinant vanishes our procedure fails2.
Really, this theorem defines the solvable model up to the condition (4). We
show that it is always possible to choose Pi (and thence Ni) and β to satisfy
this condition. We start by defining the n-dimensional vector

Φl = P+
∂ϕl

∂n
.

Considering the Φl as columns of a n×NT matrix Φ we can write the condition
(4) in matrix form Φ = βPi where we have implicitly assumed that {el} is
the standard basis (so A is a diagonal matrix in this basis). We diagonalise
the self-adjoint matrix

ΦΦ∗ = U∗DU (5)

and define the n×NT matrix

Υ = UΦ . (6)

Consequently condition (4) becomes

Υ = UβPi (7)

and we claim that this has solution

β = U∗D
1
2 (8)

Pi = D− 1
2 Υ (9)

where we take the real non-negative square root of D—it follows easily from
(5) that the components of D are non-negative. When D has zeroes on

the diagonal we make sense of (9) by defining D− 1
2 to have zeroes at the

corresponding positions in the diagonal.
Clearly (8,9) formally satisfies (4) or (7) and we will show that this holds
even when D has zeroes. As we pointed out above β can take any form so
the choice of β needs no further discussion. We just need to show that Pi is
an orthogonal projection for suitable bases.
Assuming for now that D has no zeroes we consider following set

ηk =

NT∑
l=1

(
D− 1

2 Υ
)

k,l
el (10)

of vectors in EA. Since {el} is orthonormal, and since (5) and (6) give us

ΥΥ∗ = D , (11)

we see that {ηk}n
k=1 is also an orthonormal set in EA. Now we claim that

this is the basis of Ni. In consequence

Pi =
n∑

k=1

|ηk〉 〈ηk| ,

2Although it appears that the condition of null-intersection may be relaxed.
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with domain in the basis {el} and range in the basis {ηk}, just takes the
desired form (9). We note that in this case (D having no zeroes) the deficiency
index is d = n.
In the case where D has zeroes on the diagonal we easily see from (11) that
the corresponding rows of Υ are identically zero. Consequently, using the
given definition of D− 1

2 we see that D
1
2D− 1

2 has ones on the diagonal except
at those positions corresponding to the zero rows of Υ so that

D
1
2D− 1

2 Υ = Υ

and (8,9) continues to satisfy (4), (7). Furthermore the definition of the
basis (10) continues to make sense as does the demonstration that Pi is an
orthogonal projection. We note that in this case the deficiency index is
d = rank(D) < n.

The condition for the non-intersection N−i ∩ Ni = ∅ can be written in
terms of the non-vanishing of a determinant involving D− 1

2 Υ and the eigen-
values λl. Really, working in the basis {el} of EA we see that Ni has or-

thonormal basis given by the rows of D− 1
2 Υ. Since the Cayley trasform

(A+ i) (A− i)−1 is unitary, N−i has orthonormal basis given by the rows of

D− 1
2 Υ diag ((λl + i)/(λl − i)). Consequently, the deficiency subspaces have

null intersection iff

det

(
D− 1

2 Υ

D− 1
2 Υ diag

(
λl+i
λl−i

) ) 6= 0 (12)

where of course we omit any zero rows in the matrix D− 1
2 Υ.

In summary, given the data (2) we find D, U and Υ from equations (5)
and (6). The boundary condition for the desired solvable model is then given
by equation (8) and the deficiency subspace is given by (9,10) where the
deficiency index is d = rank(D) ≤ n. We note that there are no free param-
eters to ensure that the condition for the null intersection of the deficiency
subspaces (12) is satisfied.
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