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Abstract
A techniques of an intermediate operator is developed for the Friedrichs model
obtained as a finite-dimensional perturbation

P −→ Pε = P + εA

of the momentum operator P = 1
i

d
dx , defined by the corresponding operator-

extension procedure. This technique permits to observe a creation of the resonance
at the given point k0 via presenting the Scattering matrix for the above pair as a
product of the non-analytic at (ε, k) = (0, k0) factor S

ε

0
(k) which is the Scattering

matrix to the pair
{
Pε

0
, P

}
of the momentum with a local intermediate operator

Pε

0
, and an analytic factor S

(
P + εA, Pε

0

)
of both variables (ε, k) near the point

(0, k0) which is the Scattering matrix of the pair
(
Pε ,P

ε

0

)
. The corresponding

representation is valid also for eigenfunctions of the perturbed operator.

1 Introduction

The standard technique of analytic perturbation theory is developed for ad-
ditive perturbations Aε = A + εB of operators with discrete spectrum, see
for instance [15]. Mathematicians knew already long ago, see [4], that for
perturbation of continuous spectrum the analytic perturbation procedure is
convergent only for small values of the perturbation parameter ε - “below the
threshold of creation of resonances ”, but can’t be extended beyond this limit.
Probably I. Prigogine was the first physicist who really worried about this
fact, and even tried to attract attention of specialists to necessity of extend-
ing the range of application of the analytic perturbation technique. Trying to
reconsider the analytical perturbation techniques for continuous spectrum he
suggested to replace continuous branches of spectrum by resonances which
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form a discrete set in the complex plane of the spectral parameter and prob-
ably may be treated with the analytic perturbation techniques, similarly to
eigenvalues.Prigogine attributed the idea of the important role of resonances
in perturbation theory to H. Poincare, [30], who connected them with small
denominators in celestial mechanics. Unfortunately the price of replanting of
the whole perturbation problem into the resonance ground is too big, since
the set of resonance states is, normally, complete only in a tiny subspace of
the original space. I. Prigogine assumed that this price may be reduced, if
we leave the cosy Hilbert environment and pass to the larger class of Banach
or topological spaces, say via rigging the original Hilbert space, [36, 37]. But
the elegant construction developed from this idea did not become practical,
since the choice of the Gelfand triples of the rigged spaces is not uniquely
defined by the physical content of the problem, but is rather in hands of
the researcher. Even for classical model dynamical systems the choice of rig-
ging may affect the final results essentially, just violating the basic physical
requirement of uniqueness.

According to evidence from his collaborators, I.Prigogine attempted also
to use the idea of an intermediate operator as a base for development of the
analytic perturbation techniques for operators with continuous spectrum. He
assumed that there may exist an operator Cε in the commutant see [32, 33, 7,
36, 2] of the non-perturbed operator A0 such that the analytic perturbation
procedure is convergent for the pair (Cε , Aε).

In fact this dream by I. Prigogine was almost realized by I. Glazman when
he invented in fifties his “splitting method”, see [9], which totally changed
the whole picture of the qualitative spectral analysis. But this discovery was
never considered in context of the analytic perturbation techniques.

In Scattering problems on Quantum Neworks, in particular one on the
Quantum Switch, see [19], presented as a circular quantum well Ω0 with four
straight wires Ωs width δ, attached to it orthogonally, the idea of the inter-
mediate operator looks quite natural. The absolutely-continuous spectrum
of the Schreödinger equation on this network has a band structure, and the
configuration of scattered waves is obviously different on neighboring spec-
tral bands. This observation suggests the idea that the intermediate operator
should be defined locally (on a certain interval of energy ), but not globally,
as probably Prigogine expected. In [19] the “restricted” intermediate opera-
tor for the values of energy on the certain spectral band is actually defined
as a Schrödinger operator supplied with the semi-transparency conditions on
the bottom sections γs of the wires: the partial orthogonality to all channel
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vectors es of the open channels,for given Fermi level E
F
, in the open channels:

〈u0, e
l

s
〉 = 0, 〈us, e

l

s
〉 = 0, if

π2 l2

δ2 <
2mE

F

�2
, (1)

and the continuity in the closed channels:

〈u0 − us, e
l

s
〉
∣
∣
∣

γs

= 0, 〈∂u0

∂n
− ∂us

∂n
, e

l

s
〉
∣
∣
∣

γs

= 0, if
π2 l2

δ2 >
2mE

F

�2
, (2)

which corresponds to “chopping off” the open channels. The threshold of the
continuous spectrum of the Schrödinger equation on the network with the
open channel “chopped-off” is higher than the threshold of the continuous
spectrum of the original equation. Solutions of the homogeneous Schrödinger
equation with chopped-off lower channels decrease exponentially at infinity.
It appeared that the scattered waves of the original problem can be obtained
via matching of these solutions in lower channels with the oscillating exponen-
tials, subject to the above partial matching conditions (2). This matching is
done based on Dirichlet-to-Neumann map of the corresponding intermediate
operator (for given Fermi level) and results in Scattered waves on the open
channels, with a finite-dimensional Scattering matrix. Construction of the
Scattering matrix on the next spectral band, for higher Fermi level, requires
another intermediate operator, because the structure of the Scattered wave
on the neighboring spectral band is different. Hence for the Quantum net-
work the construction of a system of intermediate operators on the quantum
network is defined by the structure of spectral bands, see [20].

One may say, that the only essential difference of the above notion of the
intermediate operator from the initial idea of Prigogine is the “ locality ” of
the structure of the family of intermediate operators, depending on the local
structure of the continuous spectrum.

Seems that for operators with Lebesgues absolute continuous spectrum
(constant multiplicity) the above construction of the intermediate is not ap-
plicable. In particular the standard procedure of analytic perturbation the-
ory suggested in [4] for the additive perturbation of the momentum operator
(“Friedichs model”)

Pε = P + εA

is converging only for small values of the perturbation parameter ε. Exten-
sion of perturbation procedure beyond the threshold of creation of resonances
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requires another techniques, the non analytic techniques of the Mathemat-
ical Scattering Theory, developed in the middle of the previous century in
numerous papers by T. Kato, M. Rosenbloom, M. Birman, [14, 38, 3] and
others quoted in [15]. Still the practical question on a reasonable conve-
nient procedure of construction of scattered waves and/or Scattering matrix
remains.

In this paper we describe an observation which probably permits to return
to the idea of the intermediate operator again and construct the combined
perturbation procedure at least for operators which are equivalent to the
general Friedrichs model , with the first step P −→ Pε

0
based on the corre-

sponding “intermediate operator” - the solvable model Pε

0
, constructed for

local use, in a certain interval of the values of the spectral parameter p near
the point p0, where the resonance is created,followed by the analytic pertur-
bation procedure for calculation of the spectral characteristics of Pε based
on spectral data of the intermediate operator Pε

0
.

The Friedrichs model is one of most popular models in spectral the-
ory,both solvable and representative, see for instance [12, 34, 13, 24] and
special papers [5, 6, 25, 21], where it is actually used for investigation of a
subtle question of complex analysis on uniqueness of interpolation in Nevan-
linna class. In this paper we use a modified version of the Friedrichs model
which is especially convenient for exploration of the resonance scattering be-
cause of presence of spectral characteristics of the inner Hamiltonian in it,
in explicit form.

The plan of our text is the following: in the next section we describe our
version of the Friedrichs Model “with inner structure” and calculate the cor-
responding Scattering matrix in terms of the Nevanlinna-class Weyl-function
defined by the spectral characteristics of the inner Hamiltonian A. In section
3 we explore the distribution of resonances and factorize the corresponding
Scattering matrix as a product of the non-analytic factor Sε interpreted as a
Scattering matrix of properly constructed intermediate operator Pε

0
, and an

analytic factor which is a Scattering matrix of the pair P −→ P + εA, Pε

0
.

In the last section (appendix) we overview the Gohberg-Sigal theorem on the
logarithmic residue.
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2 Friedrichs model with an inner structure

We use in this paper the Friedrichs model with an inner structure which
is obtained as a perturbation 1 P

β
of the orthogonal sum P ⊕ A of the

momentum P = 1
i

d
dx

in L2(R, E), dimE = m < ∞ and a finite-dimensional
self-adjoint operator acting in the space K, A : K → K, dimK = k < ∞.
An operator of similar form may appear in quantum stochastic calculus as a
self-adjoint dilation of the generator of an averaged evolution on stochastic
background, see for instance [17, 22].

We construct the P
β

via operator extension procedure, beginning from

restriction of the momentum P → P0 onto the domain D0 = W 1,0
2 (R, E) of

all smooth functions taking values in E and vanishing at the at origin.The
operator P0 is a symmetric with deficiency indices (n, n), n = dim E.The
corresponding adjoint operator P+

0
is defined on W 1

2 (R−) ⊕ W 1
2 (R+) with-

out any boundary conditions at the origin. The boundary form, see for
instance [28, 11, 1] of the adjoint operator J(u, v) = 〈P+

0 u, v〉 − 〈u, P+

0
v〉 =

i [uv̄(0+) − uv̄(0−)] can be presented in terms of the corresponding symplectic
variables ξ±:

ξu
+ =

u(0+) + u(0−)

2
, ξu

− = i
[
u(0+) − u(0−)

]

as
Jp(u, v) = 〈ξu

−, ξv
+〉E

− 〈ξu
+, ξ̄v

−〉E
(3)

A version of operator extension theory for the finite-dimensional operator
was developed in [16]. The symplectic version of the corresponding extension
procedure we are going to use is described in [1, 18]. Main obstacle to the
construction procedure in finite-dimensional case - the absence of the adjoint
operator - is avoided via reducing of the construction onto the defect - the
sum of deficiency subspaces N

i
= N, N−i

= A+iI
A−iI

N , dimN = n such that N
i
∩

N−i
= 0. The restricted operator is defined on D

A0
= 1

A−iI
K � N .Choosing

an orthogonal basis es ∈ N and the corresponding basis ês = A+iI
A−iI

es ∈ N−i
,

we introduce a new basis in defect D = N + N−i
:

W
+

s
=

es + ês

2
=

A

A − iI
es , W

−

s
=

es − ês

2i
= − 1

A − iI
es .

1Here β is a matrix-valued (non small,generally) parameter labelling self-adjoint exten-
sions, see below (4).
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Then the elements from the defect are uniquely presented as linear combina-
tions : u

d
= A

A−ipI
η+ − 1

A−ipI
η− , where

η+ =
∑

s

η
s

+
es , η− =

∑

s

η
s

−es .

The formal adjoint operator A
+

is defined on the defect as :

A
+

e
s

= −ie
s
, A

+

ê
s

= iê
s

or
A

+

W
+

s
= W

−

s
, A

+

W
−

s
= −W

+

s
.

Lemma 2.1 [28, 18] The boundary form of the formal adjoint operator is
calculated in terms of symplectic variables η

u

± , η
v

± as

J
A
(u, v) = 〈A+

u, v〉 − 〈u, A
+

v〉 = 〈ηu

+
, ηv

−〉 − 〈ηu

− , ηv

+
〉

and it depends on the defect part of the vectors u, v only.

Consider the orthogonal sum P0⊕A0 of the restricted operators and construct
a Lagrangian plane L

β
parametrized by the hermitian matrix B connecting

the symplectic coordinates ξ± of the “outer” component with the symplectic
coordinates η± of the “inner” components

B =

(
β00 β01

β10 β11

)

with elements β10+ = β01 ∈ Cm × Cn , β00 ∈ Cm × Cm , β11 ∈ C1 × C1 , .

Theorem 2.1 The joint boundary form Jp(u, v) + JA(u, v) vanishes on the
Lagrangian plane L

β
described by the equation :

(
ξ−
η+

)
= B

(
ξ+

η−

)
. (4)

This Lagrangian plane defines a joint self-adjoint extension P
β

of P0 ⊕ A0.

The constructed operator P
β

has absolutely continuous spectrum multiplic-
ity m on the interval (−∞, ∞).The corresponding eigenfunctions Ψ have
two components : in the “outer” space L2(R, E) and in the inner space
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K Ψ = {Ψ0 , Ψ1}. They fulfill the adjoint homogeneous equations and the
above boundary conditions (4). The symplectic coordinates η± of the solu-
tion are connected via analog of the Weyl function M(p) = P

N

I+pA
A−pI

P
N
, see

for instance [29, 26]:
η− = −M(p)η+ .

The Weyl function belongs to Nevanlinna class ( that is: it is analytic and
has a positive imaginary part in upper half-plane 	p > 0). Then, presenting
the outer component of the “incoming” eigenfunction by the Ansatz

Ψ0(x, ν) =

{
eipxν for x < 0,

eipxS
β
ν for x > 0,

, (5)

and the inner component defined as

Ψ1(ν) =
A + iI

A − pI
η+(ν),

with η+(ν) to be found from the above boundary condition (4), we can re-
write the equation as

(
i(Sν − ν)

η+(ν)

)
=

(
β00 β01

β10 β11

) (
S+1

2
ν

−M (p) η+(ν)

)
,

hence η+(ν) = β10

I+S
2

ν − β11 Mη+(ν) and

i (S − 1) ν =
[
β00 − β01 M (1 + β11 M)

−1

β01

] S + I

2
ν

and

ην =
1

I + β11M
β10

I + S

2
ν.

This implies the following expression for the Scattering matrix S :

Theorem 2.2 The Scattering matrix defined as the transmission coefficient
in the exterior component of the Scattered waves (5) is presented as:

S
β
(p) =

i + 1
2

[
β00 − β01 M (1 + β11 M)

−1

β10

]

i − 1
2

[
β00 − β01 M (1 + β11 M)

−1

β10

] , (6)

where the denominator is the first factor and the numerator is the second.
The scattered waves of the perturbed operator are defined by (5) with S = S

β
.
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Remark 1 The perturbed momentum operator P
β

acting in extended
space L2(R, E) ⊕ K, is unitary equivalent to P . This unitary equivalence is
defined by the corresponding wave operators, transforming the non-perturbed
scattered waves into perturbed ones

W−e
ipx

ν =

(
Ψ0

Ψ1

)
,

P
β

= W−PW
+

− .

The same operators can transform the multiplication operator Q : u −→ xu
into

Q
β

= W− Q W
+

− ,

acting in the extended space, such that the pair P
β
, Q

β
fulfills the same com-

mutation relations as P , Q. This fact permits to introduce the corresponding
non-hermitian creation and annihilation operators, coherent states and other
standard objects.

Remark 2 If B = 0, then S = 1, which corresponds to the non-
perturbed operator. But it is impossible to construct an analytic ( with re-
spect to the perturbation parameters β

il
) branch of eigenfunctions Ψν (p, β)

of the perturbed operator for any p that coincides with the eigenfunction
eipxν of the non-perturbed operator at B = 0. In the following section we
will suggest a special perturbation procedure which permits to overcome this
basic difficulty locally, near certain point (p0 , 0) in the space (p, β) based on
introduction of a special intermediate operator.

Generally the above formula 6 produces an expression for the Scattering
matrix with non-trivial asymptotic at infinity

S
β
(p) →

i + 1
2

[
β00 − β01 (−PAP ) [1 + β11 (−PAP )]

−1

β10

]

i − 1
2

[
β00 − β01 (−PAP ) [1 + β11 (−PAP )]

−1

β10

]

when p → ∞.

Theorem 2.3 The Scattering matrix has the “natural” asymp-
totic behavior at infinity S

β
(p) → I, if and only if
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[
β00 − β01 (−PAP ) (1 + β11 (−PAP ))

−1

β10

]
= 0. In particular the

Scattering matrix tends to unity at infinity if

β11 = 0 and β00 + β01PAPβ10 = 0. (7)

If the boundary parameter β00 is selected such that this condition is fulfilled,
then the corresponding Scattering matrix is represented as a finite Plashke-
Potapov product 2 with zeroes (resonances) in upper half-plane.

Proof Introducing the notation

M(p) = −PAP + P
I + A

2

A − pI
P := a + m(p),

with the Nevanlinna-class function m tending to zero at infinity, we can
present the expression for the numerator of the Scattering matrix (6) as 3

i +
1

2

[
β00 − β01

a

I + β11a
β10

]
+

1

2

[
β01

a

I + β11a
β10 − β01

a

I + β11a + β11m
β10

]
+

1

2

[
−β01

m

I + β11a + β11m
β10

]
. (8)

Due to Hilbert identity the mid term can be presented as

1

2

[
β01

a

I + β11a
β11m

a

I + β11a + β11m
β10

]
.

Together with the theorem condition this implies the following formula for
the numerator of the Scattering matrix:

i +
1

2

[
β01

(
a

I + β11a
β11 − I

)
m

I

I + β11a + β11m
β10

]

with an expression in brackets approaching zero at infinity. Then the Scat-
tering matrix

S
β
p =

i + 1
2

[
β01

(
a

I+β11a
β11 − I

)
m a

I+β11a+β11m
β10

]

i − 1
2

[
β01

(
a

I+β11a
β11 − I

)
m a

I+β11a+β11m
β10

]

2See [23, 8]
3In all fractions below (8) the numerator is preceding the denominator
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tends to I at infinity.
In particular the Scattering matrix tends to unity at infinity if β11 = 0

and β00 + β01PAPβ10 = 0. In this case the expressions in brackets in both
numerator and denominator are Nevanlinna functions and the Scattering
matrix

S
β
(p) =

2i − β01mβ10

2i + β01mβ10

=
2i − β01

I+A
2

A−pI
β10

2i − β01

I+A
2

A−pI
β10

(9)

is a finite Blaschke-Potapov product [23, 8] with vector zeroes ps : S
β
(ps)νs =

0 in upper half-plane 	ps > 0:

S
β
(p) =

∏

s

[
p − ps

p − p̄s

Ps + (I − Ps)

]
.

Here Ps are orthogonal projections in E which depend on the order of factors,
see the discussion in the end of the next section.

�

3 Analytic perturbation procedure and

Intermediate operator

We begin with a general statement concerning resonances.

Lemma 3.1 If the condition (7) is fulfilled, then the zeroes of the Scattering
matrix resonances depend analytically on the boundary parameter β01 and
may be found for small values of the parameter via analytical perturbation
procedure.

Proof is based on matrix version of Rouche theorem by Gohberg and
Sigal, see [10] and Appendix below where the simplest version of this general
fact is described. We consider here only the generic case when all eigenval-
ues αs of the operator A are simple. Denoting qs = es〉 〈es the corresponding
eigen-projections, we may present the function in the numerator of the Scat-
tering matrix as

β01P
I + A

2

A − pI
Pβ01 =

∑

s

1 + α
2

s

αs − p
εsQs , (10)
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where Qs = νs〉 〈νs is an orthogonal projection onto the one-dimensional
subspace spanned by β01Pes =‖ β01Pes ‖ νs and εs =‖ β01Pes ‖. We assume
that ε = (ε0 , ε1 , ε3, . . .) is a non-zero vector. We will use ε as a perturbation
parameter instead of the matrix β01 . Our nearest aim is: to calculate the
resonance ps0 created from α0 at ε0 = 0, assuming that |ε| = maxεs is small.

It is clear that an essential contribution to the above function (10) near

the pole α0 is defined by the nearest singular summand
1+α

2

0

α0−p
ε0Q0 . Planning

to use the Gohberg-Sigal theorem, see Appendix, introduce two functions

m(p) = 2i −
∑

s

1 + α
2

s

αs − p
εsQs and m0(p) = 2i − 1 + α

2

0

α0 − p
ε0Q0 ,

m
−1

0
(p) =

1

2i



I − Q0

iε0

1+α
2

0

2

α0 + iε0

1+α
2

0

2
− p



 ,

and the ratio

m
−1

0
(p) m(p) = I − m

−1

0

∑

s �=0

1 + α
2

s

αs − p
εsQs := I − m

−1

0
m0 .

Zeroes of the function m coincide with resonances. The only zero of the

function m0 sits at α0(ε) = α0 + iε0

1 + α
2

0

2
. Consider a circle Σ0 with radius

δ centered at α0(ε). The ratio m
−1

0
m0 can be estimated on the circle Σ0 ={

p : |α0 + i
ε
0

2
− p| = δ

}
as

‖ m
−1

0
m0 ‖

1

2

[

1 + ε0

1 + α
2

0

2

]
∑

s �=0

εs

|αs − α0 | − δ
, (11)

hence it is small for small |ε| + δ << min |α0 − αs |. Both functions m, m0

are analytic inside the circle Σ0 , hence, due to Gohberg - Sigal theorem, the
function m has zeroes inside Σ0 with the total multiplicity M0 = dim Q0 , in
particular: it has only one simple zero, if M0 = 1.

We continue our reasoning assuming that M0 = 1. Then the function

m
−1

=
[
I − m

−1

0
m0

]−1

m
−1

0
has only one pole p0(ε), which will be found

based on integration of m
−1

on the circle Σ0 .
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Consider the left factorization of the function m at the resonance p0(ε):

m(p) =
(
[p − p0(ε)]P

+

0
(ε) + b(ε)(I − P

+

0
)
)

µ̂ (p) := m
+

0
µ̂ (p). (12)

Here P
+

0
is the orthogonal projection onto the null-space of m

+
at the point

p0(ε) (“left” null-space of m : P
+

0
m (p0(ε)) = 0. The residue of the function

m
−1

at p0(ε) is calculated as an integral of m
−1

=
[
I − m

−1

0
m0

]−1

m
−1

0
=

m
+

0
µ̂ on the circle. The second representation gives the formula :

1

µ̂ (p0(ε))
P

+

0
(ε) =

1

2π

∮

Σ0

1

ˆµ(p)



 P
+

0
(ε)

[p − p0(ε)]
+

(
I − P

+

0
(ε)

)

b(ε)



 dp. (13)

On the other hand the residue can be found via integration of another ex-
pression for m

−1
(p) on the circle:

1

2π

∮

Σ0

[
(m0(p))

−1

+ (m0(p))
−1

m0(p) (m0(p))
−1

+ . . .
]
dp. (14)

The series in the integrand is converging geometrically, and each term of it
is calculated by residues at the pole α0ε, for instance

1

2π

∮

Σ0

(m0(p))
−1

dp =

1

2π

∮

Σ0





1

2i



 α0 − p

α0 + i
ε0 (1+α

2

0
)

2
− p



Q0 +
1

2i
[I − Q0 ]





dp = ε0

1 + α
2

0

2
Q0 .

Next terms contain derivatives of m0 at the pole α0ε = α0 + i
ε0 (1+α

2

0
)

2
. The

structure of the whole expansion is similar to the expansion by residues which
arises in the standard Feynmann diagram technique, because the idea of
calculation of the residue based on use of two different forms of the integrand
is the same as in Feynmann case.

The analyticity of the projection P
+

0
(ε) as a function of ε follows from the

geometrical convergence of the series in the integrand of (14) which follows
from the estimate (11).
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The orthogonal projection P
+

0
(ε0) onto the null - subspace of m

+
(p0(ε0))

is calculated, up to a constant, as

P
+

0
(ε)

(
1

µ (p0(ε))

)+

1

µ (p0(ε))
P

+

0
(ε) = ConstP

+

0
(ε).

The zero p0(ε) of the function m can be obtained from comparison of the
previous integral with the integral

1

2π

∮

Σ0

p

µ(p)
dp =

p0(ε)

µ (p0(ε))
P

+

0
(ε).

Thus both the resonance p0(ε) and the corresponding left root-vector ν
+

0
are

defined. The right root-vector can be found in a similar way.
�

Assuming that the condition of the preceding theorem are fulfilled, con-
sider the rational representation of the Scattering matrix of the operator
P

β

S
β
(p) =

2i −
∑

s

1+α
2

s

αs−p
εsQs

2i −
∑

s

1+α
2
s

αs−p
εsQs

(15)

where Qs is the orthogonal projection onto the subspace spanned by the vec-
tor β01PN

νs obtained from the eigenvector νs of A via successive projections
onto the deficiency subspace N = N

i
and then applying the linear boundary

map β01 . If the order of Blaschke-factors is fixed, one can also present the
Scattering matrix for small values of ε in form of Blashke-Potapov product
with simple Blaschke factors Bs

∏

s

{[
p − ps(ε)

p − p̄s(ε)

]
Ps + P

⊥

s

}
=:

∏

s

Bs . (16)

Theorem 3.1 Each Blaschke factor in (16) is an analytic function of both
variables (p, ε) on the product of a small neighborhood of the origin in ε-space
and a complement of a small neighborhood of the corresponding point αs of
creation of the resonance ps(ε) in p-space. In particular, selecting B0 = S

ε

0

as the first factor on the right, we obtain the factorization of the Scattering
matrix in form of two factors:

Sε = S
0

ε
S

ε

0
, (17)
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with the left factor analytic with respect to (ε, p) on a small neighborhood
(0, α0), and the second - non-analytic on that neighborhood.

The non-analyticity of the factor S
β

0
causes the non-analyticity of the whole

product and corresponds to the fact of the non-analyticity of the Scatter-
ing matrix with respect to the perturbation parameter at the “threshold of
creation of resonances”.

Remark: Construction of Blaschke-factors. Assume that the right
factorizations of the Scattering matrix are constructed at each resonance

S
β
(p) = B

s

(p) Bs(p), Bs(p) =
p − ps(ε)

p − p̄s(ε)
Ps + [I − Ps ] . (18)

The right Blaschke- factors Bs(p) do not coincide with the correspond-
ing Blaschke- factors Bs(p) in the above product (16) due to the non-
commutativity of the factors. We suggest here the procedure of construction
of the factors Bs(p) once the factors Bs(p) are given.

Assume that the factors B0 , B1 , B2 , . . . are ordered from the right to the
left such that B0 is the first factor from the right, B1 is the second factor
from the right .... Denoting by Ns , Ns the ranges of Ps , Ps respectively and
by νs , νs any vectors from Ns , Ns we can write down the following chain of
equations

B0(p0) = B0(p0), N0 = N0 , P0 = P0 ,

B1(p1)B0(p1) ν1 = 0, or N1 = B0(p1)N1 ,

B2(p2)B1(p2)B0(p2) ν2 = 0, or N2 = B1(p2)B0(p2)N2 ,

B
l
(p

l
) . . . B2(pl

)B1(pl
)B0(pl

) ν
l
= 0, or N

l
= B

l−1
(p

l
) . . . B1(pl

)B0(pl
)N

l
,

(19)
We obtain the chain of one-dimensional subspaces if each product
B

l−1
(p

l
) . . . B1(pl

)B0(pl
) of Blaschke factors does not degenerate on the cor-

responding subspace N
l
:

B
l−1

(p
l
) . . . B1(pl

)B0(pl
)ν

l
�= 0. (20)

Theorem 3.2 The condition (20) of transformation of the rational form of
the Scattering matrix (15) into the Blashke-product (16) is fulfilled for small
values of the perturbation parameter ε.

14



Proof For small values of the perturbation parameter the imaginary parts
	ps of resonances are small, hence each term in the previous chain of equa-
tions can be re-written in form :

N1 =

[
I − i

2	p0

p1 − p̄0

P0

]
N1 ,

N2 =

[
I − i

2	p1

p2 − p̄1

P1

] [
I − i

2	p0

p2 − p̄0

P0

]
N2

N
l
=

[
I − i

2	p
l−1

p
l
− p̄

l−1

P
l−1

] [
I − i

2	p
l−2

p
l
− p̄

l−2

P
l−2

] [
I − i

2	p0

p
l
− p̄0

P0

]
N2 . (21)

Then due to small 	p0 the operator
[
I − i

2�p0

p1−p̄0
P0

]
is invertible and hence

N1 is has the same dimension as N1 . The projection P1 exists. Then above
argument may be applied to the second equation, to find P2 , and so on until
all projections P

l
are defined.

�

Note that the structure of each Blaschke Bs factor shows that it has a
zero at ps(ε), a pole at p̄s(ε) and both of them approach to the eigenvalue of
the inner Hamiltonian when ε → 0. The Blaschke factor is not analytic with
respect to (ε, p) near (0, α0) due to convergence of the zero and the pole to
the same point α0 . The Blaschke factor Bs is analytic with respect to (ε, p)
for small values of ε , if |p − αs| > δ > 0. The whole Scattering matrix
(18) is not analytic with respect to the perturbation parameter near each
eigenvalues αs of the “inner Hamiltonian ” A due to presence of the non-
analytic factor Bs . Nevertheless one may modify the perturbation procedure
locally, eliminating, for instance, the non-analytic factor S

ε

0
:= B0 via the

“jump-start” 4: by introducing of the intermediate operator Pβ

0
, which is

selected such that S
ε

0
= B0 is the Scattering matrix for the pair

(
Pε

0
, P

)
.

Then the Scattering matrix can be presented as a product of the non-analytic,
but explicit factor S

ε

0
and the complementary analytic factor which is the

Scattering matrix of the pair
(
Pε , P

ε

0

)
. The construction of the intermediate

operator is described below under assumption that we know the resonance
p0(ε) and the corresponding resonance root - vector exactly 5.

4The term suggested by L. Faddeev
5If we know p0(ε) only asymptotically, as a finite power expansion in the perturbation

parameter, the corresponding approximate formulae are still valid, but the statement
of analyticity disappears. Practical corollaries from this observation will be discussed
elsewhere.
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Note that the real and imaginary parts of the resonance can be expand
into convergent power series of the real perturbation parameter ε, because
of analyticity of p0(ε). Hence the real and imaginary parts of the resonance
are also real analytic functions of the perturbation parameter ε.

Theorem 3.3 For given Blaschke factor

Bε =

{[
p − p0(ε)

p − p̄0(ε)

]
P0 + P

⊥

0

}
,

with the one-dimensional projection P0 = νε〉 〈νε. Consider the one-
dimensional operator A

ε

0
with the eigen-value α

ε

0
= �p

s
(ε) and the boundary

matrix

B =

(
β00 β01

β10 0

)

with the deficiency vector e of A mapped into E as

β01 =

√

2
	 p0(ε)

1 + α2

0

ν0(ε),

and the operator β00 = −β01αβ
+

01
. Then the Scattering matrix for the pair(

Pβ

0
, P

)
coincides with S

ε

0
.

Proof. The Scattering matrix for the constructed operator is calculated as in
(9):

S(p) =
2i − 1+α

2

0

α0−p
β01〉 〈β01

2i +
1+α2

0

α0−p
β01〉 〈β01

.

Multiplying by (p − α) and dividing through 2i, we transform the latter
expression to

p − α0 − i (1+α
2
)

2
|β01|

2

p − α0 − i (1+α2 )
2

|β01|2
P0 + P

⊥

0
=

P
⊥

0
+

p −
(

α0 + i|β01 |
2 1+α

2

0

2

)

p −
(

α0 − i|β01|2
1+α2

0

2

)P
⊥

0
,
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Where P
⊥

0
is the orthogonal projection onto the complement of the Q0E

which coincides with the Blaschke factor B0 . Substituting here the data

α0(ε) = �p0(ε), |β01|
2 1+α

2

2
	p0(ε), we obtain, after simple transformations ,

the Blaschke-factor Bε .
�
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5 Appendix

Let E0 be proper subspace of the finite-dimensional Hilbert space E , P0 is
an orthogonal projection onto E0 and P⊥

0 = I − P0 - the projection onto
the orthogonal complement E⊥

0
= E �E0 . We say that the analytic matrix-

function m defined on the domain Dm has a simple isolated right vector zero
at the point p0 ∈ Dm if it may be represented in a neighborhood U0 ⊂ Dµ as
a product

m(p) = µ0(p)
[
(p − p0)P0 + bP⊥

0

]
(22)

with some nonzero constant b, the right orthogonal projection P0 and an
invertible near p0 analytic matrix-function µ0(p)

µ0(p) = µ0(p0) +
p − p0

1!
µ′

0
(p0) + . . . , Ker µ0(p0) = 0.

Multiple zeroes are defined by the similar to (22) with several right factors
with different projections. One can define in a similar way the left vector
zero and the corresponding left projection based on the factorization

m(p) =
[
(p − p0)P

+

0
+ bP⊥

0

]
µ

l

0
(p) (23)

For finite-dimensional square matrix-functions the left and right vector ze-
roes coincide and dim bfP

0
= dim bfP

+

0
due to Fredholm theorem. The

vectors e0 , e
+

0
∈ N0 , N

+

0
from the corresponding null-subspaces are called
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respectively right and left root-vectors, m(p0)e0 = 0, m
+
(p0)e

+

0
= 0. For vec-

tors e⊥ from the complementary subspace e⊥ ∈ E0⊥ we have m(p0)e⊥ �= 0 .
Similarly the simple isolated vector pole is defined : we say that the function
m has a simple isolated vector pole at the point p0 if it is represented as

m(p) = µ

[
P0

p − p0

+ bP⊥
0

]
(24)

with a non-zero constant b and an orthogonal projection P0 onto proper
subspace N0 ⊂ E, the complementary projection P

⊥

0
and an analytic invert-

ible function µ in a neighborhood U0 of the point p0 ∈ Dm. Similarly the
left poles are defined, which coincide with right poles in finite-dimensional
case. Both isolated poles and zeroes of analytic matrix-functions are called
in [10] characteristic values of the argument µ. The logarithmic residue of
the function µ at the simple isolated zero or pole is defined as an integral of
the logarithmic derivative m′(p)m

−1
(p) on a simple smooth curve Γ0 ⊂ U0 in

anti-clockwise (“positive”) direction around the characteristic value m0:

Im,p0
=

1

2πi

∮

Γ0

m′(p)m
−1

(p)dp.

In [10] the period of the logarithmic derivative m′(p)m
−1

(p) on the simple
cycle Γ0 ⊂ U0 containing no other characteristic points (zeroes, poles) inside

Mm,p0
=

1

2πi
Trace

∮

Γ0

m′(p)m
−1

(p)dp.

is called the “multiplicity” of the characteristic value. The straightforward
calculation of above integrals gives the following result:

I(m, p0) =
1

2πi

∮

Γ0

m′(p)m
−1

(p)dp =

1

2πi

∮

Γ0

µ(p)P0

[
(p0 − p)P0 + bP

⊥

0

]−1

µ
−1

(p)dp =

1

2πi
µ(p0)

∮

Γ0

P0

[
(p0 − p)P0 + bP

⊥

0

]−1

dpµ
−1

(p0) = µ(p0)P0 µ
−1

(p0),

and
Mm,p0

= ±dimP0 ,
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where the sign ± is defined by the type of the characteristic value : plus for
zero, minus for pole.

In generic situation considered in the text above the simplest version of
the Gohberg-Sigal theorem is used with that all poles (zeroes) simple (first
order).

Theorem 5.1 If two finite square matrices m, m0 depend analytically on
the parameter p in the disc D radius δ centered at the point p0, and m0

has an only characteristic point P0 at the center of the the disc with the
multiplicity M0, and on the circle Σ0 = {p : |p − p0 | = δ} both functions have
no characteristic values and the inequality

maxp∈Σ0 ‖ m−1
0

(p) [m(p) − m0(p)] ‖< 1

is fulfilled, then the total multiplicity M1 of characteristic values of the func-
tion m inside the circle Σ0 is equal to the multiplicity M0 of the characteristic
value of the function m0.

Proof of much more general statement concerning analytic functions with
multiple poles and zeroes may be found in [10]. We actually need in the
above text , section 3, a partial statement concerning the case when M0 = 1.
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[17] B. kümmerer Dilations on W∗-algebras, In: Journal. Funk. Anal., 63,
(1985) pp 139-177.

20



[18] P. Kurasov, B. Pavlov,Operator relation and Scattering matrix In: Op-
erator Theory: Advances and Applications, 113, ed. Nikolskij and all,
Complex Analysis, Operators and Related Topics, S.A.Vinogradov - in
memoriam, Birkhauser Verlag, Basel,2000, pp 294-305.

[19] A. Mikhaylova,B. Pavlov, Resonance triadic quantum switch. In: Oper-
ator methods in ordinary and partial differential equations (Stockholm,
2000), Oper. Theory Adv. Appl., 132 Birkhuser, Basel, 2002 pp 287–
322.

[20] A. Mikhaylova et all, Modelling of Quantum Networks, sbm. to : Periodic
and random media.

[21] S.N.Naboko Non-tangential boundary values of operator-valued R-
functions in a half-plane Leningrad Math. Journal , Vol. 1,5,1990,
pp1255-1277.

[22] B.Pavlov Quantum dynamics on a Markov background and irreversibil-
ity. In the book: Nonlinear Dymanics, Chaotic and Complex Systems.
Proc. Int. Conf. Zakopane Nov. 1995, Plenary and Invited Lectures.
Ed. E. Infeld, R. Zelazny, A. Galkovski. Cambridge Univ. Press 1997. p
198-205.

[23] V.Potapov Factorization of analytic matrix-function (In Russian) Trudy
Moskovskogo Matematicheskogo obschestva, 1952.

[24] B. Pavlov Nonphysical sheet for the Friedrichs model In:St. Petersburg
Math. Journal 4,6,(1993), pp 1245-1256.

[25] B. Pavlov,S. PetrasOn singular spectrum of weakly perturbed multiplica-
tion operator , Func. Analysis i ego prilogenia,v4, N2, 1970.

[26] B.Pavlov. S-Matrix and Dirichlet-to-Neumann Operators In: Scattering
(Encyclopedia of Scattering), ed. R. Pike, P. Sabatier, Academic Press,
Harcourt Science and Tech. Company (2001) pp 1678-1688.

[27] P. Lax, R. Phillips Scattering theory Academic press,New York,1967.

[28] B. Pavlov. The theory of extensions and explicitly solvable models (In
Russian) Uspekhi Mat. Nauk, 42 (1987) pp 99–131.

21



[29] B. Pavlov A model of zero-range potential with an internal structure(in
Russian) Teor. Mat. Fizika,59 (1984), pp 345-353 (English Translation
: Theor. and Math. Physics 59(1984) pp 544-550.)

[30] H. Poincare Methodes nouvelles de la mechanique celeste Vol. 1 (1892),
Dover, New York (1957)
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