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Abstract. In this paper, which is a sequel to [7], we will review some of the latest
advances that have occurred in the study of weak Asplund spaces since [7] was
written. Specifically, we will examine the recently discovered example of a Gâteaux
differentiability space that is not weak Asplund with the hope of presenting a proof
that is simpler and more accessible than the proof given in [8] and which shows the
similarity between this new example and the earlier examples of Banach spaces that
are (i) weak Asplund but not in Stegall’s class and (ii) in Stegall’s class but whose
dual space is not weak∗ fragmentable.
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1 Introduction

As mentioned in the abstract, the purpose of this note is to provide a simple and uni-
fied exposition of the recently discovered examples of Banach spaces that are: Gateaux
differentiability spaces but not weak Asplund; weak Asplund but not in Stegall class; in
Stegall’s class but whose dual space is not weak∗ fragmentable.

We begin with some definitions. A Banach space X is called a weak Asplund space [almost
weak Asplund] (Gâteaux differentiability space) if each continuous convex function defined
on it is Gâteaux differentiable at the points of a residual [everywhere second category]
(dense) subset. While it is easy to see that every weak Asplund space is an almost weak
Asplund space and every almost weak Asplund space is a Gâteaux differentiability space,
it has only recently been established that there are in fact Gâteaux differentiability spaces
that are not weak Asplund, [8].

In the study of weak Asplund spaces several classes of topological spaces have played a
prominent role; two of which we describe below. A set-valued mapping ϕ : X → 2Y acting
between topological spaces X and Y is called an usco mapping if for each x ∈ X, ϕ(x) is
a non-empty compact subset of Y and for each open set W in Y , {x ∈ X : ϕ(x) ⊆ W} is
open in X. An usco mapping ϕ : X → 2Y is called a minimal usco if its graph does not
contain, as a proper subset, the graph of any other usco defined on X.

Below we recall some of the basic properties of minimal uscos.
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Proposition 1 [2, Proposition 3.1.2] Let ϕ : X → 2Y be an usco acting between topolog-
ical spaces X and Y . Then ϕ is a minimal usco if, and only if, for each pair open subsets
U of X and W of Y with ϕ(U) ∩ W 6= ∅, there exists a non-empty open subset V of U
such that ϕ(V ) ⊆ W .

Using this characterisation one can easily deduce the following facts.

Proposition 2 [3, Lemma 2] Let ϕ : X → 2Y be a minimal usco acting between topolog-
ical spaces X and Y .

(i) If g : Y → Z is a continuous mapping into a topological space Z then the mapping
(g ◦ ϕ) : X → 2Z defined by, (g ◦ ϕ)(x) := {g(y) ∈ Z : y ∈ ϕ(x)} is a minimal usco.

(ii) If U is either a dense subset of X or a non-empty open subset of X then the restric-
tion of ϕ, denoted ϕ|U , is a minimal usco.

Given a topological space X and a class C of Baire spaces we say that X is in Stegall class
with respect to C if for every B ∈ C and minimal usco ϕ : B → 2X , ϕ is single-valued at
some point of B. If C is stable with respect to taking open subspaces and dense Baire
subsets (taking open subspaces and dense Gδ subsets) then this is equivalent to: For
every B ∈ C and minimal usco ϕ : B → 2X , ϕ is single-valued at the points of a residual
(everywhere second category) subset of B, [3, Proposition 1].

When C is the class of all Baire (all complete metric) spaces we simply say that X is a
Stegall (weakly Stegall) space. For us, the significance of this class of topological spaces
stems from the fact that for a Banach space X if (X∗, weak∗) is a Stegall (weakly Stegall)
space then X is weak Asplund, [2, Theorem 3.2.2] (almost weak Asplund, [7, Theorem
13]).

The other class of topological spaces that we shall consider in this paper is the class of
fragmentable spaces. A topological space X is said to be fragmentable if there exists a
metric d on X such that for each ε > 0 and non-empty subset Y of X there exists an
open set U in X such that (i) Y ∩ U 6= ∅ and (ii) d-diam(Y ∩ U) < ε.

As with Stegall spaces, our interest in these spaces emanates from that fact for a Banach
space X if (X∗, weak∗) is fragmentable then X is weak Asplund (in fact, if (X∗, weak∗) is
fragmentable then (X∗, weak∗) is in Stegall’s class, [2, Theorem 5.2.2]).

Although, the exact relationship between fragmentable spaces, Stegall space, weak As-
plund spaces and Gâteaux differentiability spaces remains unclear, several partial results
are known. For instance, the authors in [5] have provided an example (with the aid of
some additional set-theoretic assumptions) of a Banach space X such that (X∗, weak∗)
is in Stegall’s class but not is fragmentable while in [4] the author has given an example
(also with the aid of some additional set-theoretic assumptions) of a Banach space X
such that X is weak Asplund but (X∗, weak∗) is not in Stegall’s class. More recently, the
authors in [8] have given an example (in ZFC) of a Gâteaux space X that is not weak
Asplund.

One of the interesting aspects of all these examples (and in fact is the main motivation
for this paper) is that they are all based upon the following class of topological spaces.
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2 Kalenda compacta

Let A be an arbitrary subset of (0, 1) and let

KA := [(0, 1]× {0}] ∪ [({0} ∪ A)× {1}].

If we equip this set with the order topology generated by the lexicographical (dictionary)
ordering (i.e., (s1, s2) ≤ (t1, t2) if, and only if, either s1 < t1 or s1 = t1 and s2 ≤ t2) then
with this topology KA is a compact Hausdorff space [3, Proposition 2]; which we shall
call the Kalenda compact associated with the set A. In the special case of A = (0, 1), the
Kalenda compact KA reduces to the well-known “double arrow” space.

Many of the basic properties of the Kalenda compacta may be found in [3]. In particular,
the following results may be found there.

Theorem 1 [3, Proposition 3] Let A be an arbitrary subset of (0, 1). Then the following
properties are equivalent:

(i) A is countable;

(ii) KA is metrizable;

(iii) KA is fragmentable.

Theorem 2 [3, Proposition 5] Let A be an arbitrary subset of (0, 1). Then the following
properties are equivalent:

(i) every closed subspace of KA contains a dense completely metrizable subspace;

(ii) A is perfectly meagre.

Let us recall that a subset A ⊆ R is called perfectly meagre if for every perfect subset
P ⊆ R the intersection A ∩ P is meagre (i.e., first category) in P .

For a compact Hausdorff space space K we shall denote by, M(K) {M+(K)} [M+
1 (K)]

the space of all Radon measures on K {positive Radon measure on K} [positive Radon
measures on K, with total mass at most one], equipped with the weak topology induced
by the continuous real-valued functions defined on K. By Riesz’s representation theorem
we know that M(K) {M+(K)} [M+

1 (K)] is homeomorphic to C(K)∗ {the positive linear
functionals in C(K)∗}[the positive linear functionals in C(K)∗ with norm at most one],
equipped with the weak∗ topology.

2.1 Single-valuedness of minimal uscos into M+
1 (KA)

The goal of this section is to present some sufficient conditions for a minimal usco acting
from a Baire space into M+

1 (KA) to be single-valued. To accomplish this we will need
several (four in fact) technical results.

For an arbitrary subset A of (0, 1) we shall denote by, πA the natural projection of KA

onto [0, 1] defined by, πA(t, ε) := t and we shall denote by, π∗∗A the natural projection of
M+

1 (KA) onto M+
1 ([0, 1]) defined by, π∗∗A (µ)(E) := µ(π−1

A (E)) for each Borel subset E of
[0, 1]. In both cases the mappings are continuous.
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Lemma 1 Let A be an arbitrary subset of (0, 1) and suppose that µ, ν ∈M+
1 (KA). Then

µ = ν if (and only if) π∗∗A (µ) = π∗∗A (ν) and the restrictions of µ and ν to π−1
A (t) coincide

for each t ∈ A.

Proof: Since the functions in C(KA) separate the measures in M+
1 (KA) it is sufficient

to show that ∫
KA

f dµ =

∫
KA

f dν for each f ∈ C(KA).

To this end, fix f ∈ C(KA) and define g : [0, 1] → R by,

g(t) :=

{
f(t, 1) if t = 0
f(t, 0) if t ∈ (0, 1].

Then g is Borel measurable and J := {t ∈ A : g(t) 6= f(t, 1)} is countable. In particular
this means that µ and ν coincide on π−1

A (J). On the other hand, f = g◦πA on KA\π−1
A (J)

and so ∫
KA

f dµ =

∫
KA\π−1

A (J)

(g ◦ πA) dµ +

∫
π−1

A (J)

f dµ

=

∫
[0,1]\J

g d(π∗∗A (µ)) +

∫
π−1

A (J)

f dµ

=

∫
[0,1]\J

g d(π∗∗A (ν)) +

∫
π−1

A (J)

f dν

=

∫
KA\π−1

A (J)

(g ◦ πA) dν +

∫
π−1

A (J)

f dν

=

∫
KA

f dν. 2

Lemma 2 Let A be an arbitrary subset of (0, 1) and let ϕ : B → 2M
+
1 (KA) be a mini-

mal usco defined on a Baire space B. Then there exists a dense Gδ subset G of B and
continuous functions (gn : n ∈ N) from G into [0, 1] such that for each x ∈ G,

{t ∈ [0, 1] : π∗∗A (µ)({t}) = µ(π−1
A (t)) > 0 for some µ ∈ ϕ(x)} ⊆ {gn(x) : n ∈ N}.

Proof: Fix for a moment ε > 0, a closed set F and an open set U with ∅ 6= F ⊆ U ⊆ [0, 1].
Let Q(ε,F,U) denote the set of all those µ ∈M+

1 (KA) for which there is a ξ ∈ F such that

π∗∗A (µ)(U\{ξ}) = µ(π−1
A (U\{ξ})) ≤ ε < 2ε ≤ µ(π−1

A (ξ)) = π∗∗A (µ)({ξ}).

Then Q(ε,F,U) is closed and for each µ ∈ Q(ε,F,U) there is exactly one ξ := ξ(µ) ∈ F with the
above property. Moreover, the mapping µ 7→ ξ(µ) from Q(ε,F,U) into [0, 1] is continuous.
Hence by Tietze’s extension theorem this mapping has an extension to M+

1 (KA); which
we call ξ(ε,F,U). By Proposition 2 part(i) and the fact that [0, 1] lies in Stegall’s class we
have that ξ(ε,F,U) ◦ ϕ is single-valued (and continuous) at the points of a dense Gδ subset
G(ε,F,U) of B. Let B be a countable base for the topology on [0, 1] and let

G :=
⋂
{G(ε,V ,U) : ε ∈ (0,∞) ∩Q, V, U ∈ B and ∅ 6= V ⊆ V ⊆ U}.
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Then if we denote by (gn : n ∈ N) the functions (though technically they are single-valued
set-valued mappings) in

{(ξ(ε,V ,U) ◦ ϕ)|G : ε ∈ (0,∞) ∩Q, V, U ∈ B and ∅ 6= V ⊆ V ⊆ U}.

ordered into a sequence then we have the following. If x ∈ G, t ∈ [0, 1] and µ ∈ ϕ(x) are
such that µ(π−1

A (t)) > 0 then {t} = (ξ(ε,V ,U) ◦ ϕ)|G(x) for some (ε, V , U) and so t = gn(x)
for some n ∈ N. 2

The following theorem is essentially a consequence of Lemma 1 and Lemma 2.

Theorem 3 Let A be an arbitrary subset of (0, 1) and let ϕ : B → 2M
+
1 (KA) be a minimal

usco defined on a Baire space B. If (gn : n ∈ N) and G are the continuous functions
and Gδ subset of B given in Lemma 2 then ϕ is single-valued at x ∈ G if (i) π∗∗A ◦ ϕ is
single-valued at x and (ii) for each n ∈ N, the restriction of all the measures in ϕ(x) to
π−1

A (gn(x)) coincide.

To achieve our goal in Section 3 we need two more results.

We will say that a subset Y of a topological space X has countable separation in X if
there is a countable family {Cn : n ∈ N} of closed subsets of X such that for every pair
{x, y} with y ∈ Y and x ∈ X\Y , {x, y} ∩ Cn is a singleton for at least one n ∈ N. If we
denote by, XΣ the family of all subsets of X with countable separation in X then XΣ is
a σ-algebra that contains all the open subsets of X. Moreover, XΣ is closed under the
Souslin operation. For a mapping g : X → Y acting between topological spaces X and Y
we shall say that g is separation measurable if g−1(U) has countable separation in X for
each open set U in Y . If the range space Y has countable separation weight (i.e., there
exists a countable open cover U of Y such that for each y ∈ Y ,

⋂
{O ∈ U : y ∈ O} = {y})

then separation measurable mappings have single-valuedness implications for minimal
usco mappings.

Lemma 3 Let ϕ : B → 2X be a minimal usco acting from a Baire space B into a
topological space X and let g : X → Y be a separation measurable mapping acting from
X into a topological space Y with countable separation weight. Then (g ◦ ϕ) : B → 2Y is
single-valued at the points of a residual subset of B. In particular, if g is Borel measurable
and Y is a separable metric space then (g ◦ ϕ) : B → 2Y is single-valued at the points of
a residual subset of B.

Proof: Let U := {Um : m ∈ N} be an open cover of Y that separates the points of Y .
For each m ∈ N, let {C(m,n) : n ∈ N} be a countable family of closed subsets of X that
“separate” g−1(Um) from X\g−1(Um) (i.e., if x ∈ g−1(Um) and y 6∈ g−1(Um) then there
exists an n ∈ N such that |C(m,n) ∩ {x, y}| = 1). For each (m,n) ∈ N2 consider the dense
open set:

O(m,n) := B\ϕ−1(C(m,n)) ∪ int ϕ−1(C(m,n)) = B\∂[ϕ−1(C(m,n))]

By the minimality of ϕ (see, Proposition 1)

O(m,n) ⊆ {x ∈ B : ϕ(x) ∩ C(m,n) = ∅ or ϕ(x) ⊆ C(m,n)}.
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Note that if x ∈
⋂

n∈N O(m,n) then either ϕ(x) ⊆ g−1(Um) or ϕ(x) ∩ g−1(Um) = ∅. Let
R :=

⋂
{O(m,n) : (m, n) ∈ N2}. We shall complete the proof by showing that g ◦ ϕ is

single-valued at the points of R. To see this, consider x ∈ R and suppose that g ◦ϕ is not
single-valued at x. Then there exists an m ∈ N such that

∅ 6= ϕ(x) ∩ g−1(Um) 6= ϕ(x).

But this is impossible since x ∈
⋂

n∈N O(m,n). Hence g ◦ ϕ is single-valued on R. 2

Lemma 4 Let A be an arbitrary subset of (0, 1), ϕ : B → 2M
+
1 (KA) be a minimal usco

defined on a Baire space B and g : B → [0, 1] be a locally constant mapping. Then there
exists a dense Gδ subset G of B such that for each x ∈ G the restriction of all the measures
in ϕ(x) to π−1

A (g(x)) coincide.

Proof: Let U := {Uα : α ∈ I} be a maximal collection of non-empty disjoint open
subsets of B such that g is constant of each Uα, α ∈ I. Such a maximal family exists by
Zorn’s Lemma and it is easy to check that U :=

⋃
α∈I Uα is dense in B. Now, for each

α ∈ I, choose xα ∈ Uα. Then since the restriction mapping ρπ−1(xα) from M+
1 (KA) into

M+
1 (π−1

A (xα)) is Borel measurable we have from Lemma 2 that ρπ−1
A (xα)◦ϕ is single-valued

at the points of a dense Gδ subset Gα of Uα. Thus, G :=
⋃

Gα is the required dense Gδ

set of B. 2

3 Distinguishing the Kalenda compacta

In this section of the paper we shall characterise, in terms of the set A, when
(C(KA)∗, weak∗) lies in Stegall’s class. We shall also provide an example of a set A
such that C(KA) is a Gâteaux differentiability space that is not weak Asplund.

In the proof of the next theorem we will need the following basic properties of Stegall
spaces. Since the proofs of these assertions are identical to those given in [2, Theorem
3.1.5] we shall not repeat them here.

Proposition 3 Let X and Y be topological spaces and let C be a class of Baire spaces
that is stable with respect to taking open subspaces and dense Baire subsets.

(i) Let g : X → Y be perfect mapping onto Y . If X is a Stegall space with respect to C
then Y is a Stegall space with respect to C.

(ii) Let {Xn : n ∈ N} be cover of X. If each Xn is closed and in Stegall’s class with
respect to C then X is a Stegall space with respect to C.

(iii) If {Xn : n ∈ N} are Stegall spaces with respect to C then Π∞
n=1Xn is a Stegall space

with respect to C.

By combining Riesz’s representation theorem with Proposition 3 we obtain the following
fact.
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Corollary 1 Let C be a class of Baire spaces that is stable with respect to taking open sub-
spaces and dense Baire subsets. Then for a compact Hausdorff space K, (C(K)∗,weak∗)
is a Stegall space with respect to C if, and only if, M+

1 (K) is a Stegall space with respect
to C.

Theorem 4 [4, Proposition] Let C be a class of Baire metric spaces that is stable with
respect to taking open subspaces and dense Baire subsets and let A be an arbitrary subset
of (0, 1). Then the following assertions are equivalent:

(i) (C(KA)∗,weak∗) is in Stegall’s class with respect to C;

(ii) KA is in Stegall’s class with respect to C;

(iii) For any B ∈ C and any continuous function g : B → A the function g has at least
one local minimum or local maximum;

(iv) For any B ∈ C and any continuous function g : B → A there is a non-empty open
set U ⊆ B such that g is constant on U .

Proof: (i) ⇒ (ii). This follows from the fact that KA is homoeomorphic to a closed
subspace of (C(KA)∗, weak∗).

(ii) ⇒ (iii). Suppose (ii) holds. Let B ∈ C and let g : B → A be a continuous function.
In order to obtain a contradiction, let us assume that g has no local extrema. Then the
mapping ϕ : B → 2KA defined by, ϕ(t) := {g(t)} × {0, 1} is not only an usco but in fact
a minimal usco. Therefore, since KA is in the class of Stegall spaces with respect to C we
have our desired contradiction since ϕ is everywhere two-valued.

(iii) ⇒ (iv). Suppose that (iii) holds and that there is some B ∈ C and some continuous
function g : B → A that is not constant on any non-empty open subset of B. Fix a metric
ρ generating the topology of B. For each n ∈ N define,

Emax
n := {x ∈ B : g(x) = max{g(x′) : ρ(x, x′) < 1/n}};

Emin
n := {x ∈ B : g(x) = min{g(x′) : ρ(x, x′) < 1/n}}.

Then clearly both of the sets Emax
n and Emin

n are closed and E :=
⋃

n∈N[Emax
n ∪Emin

n ] is the
set of all local extrema of g on B. If one of the sets Emax

n or Emin
n has an interior point,

then g is constant on a neighbourhood of it. Indeed, if x is an interior point of Emax
n

then Bρ(x; δ) ⊆ Emax
n for some 0 < δ < 1/n. Let x′ ∈ B(x; δ). Then both g(x) ≥ g(x′)

and g(x′) ≥ g(x) hold and so g(x) = g(x′); which shows that g is constant on B(x; δ).
Hence both of the sets Emax

n and Emin
n are closed and nowhere dense. Therefore E is a

first category set and B′ := B\E is a dense Baire subspace of B and so it belongs to C.
Thus, by (iii), g|B′ has a local extremum at a point x ∈ B′. Then, by continuity of g and
density of B′ in B, g has a local extremum at x, with respect to B, too. Thus x ∈ E and
hence we have a contradiction.

(iv) ⇒ (i). By Corollary 1 it is sufficient to show that M+
1 (KA) is in Stegall’s class with

respect to C. To this end, let B ∈ C and let ϕ : B → 2M
+
1 (KA) be a minimal usco.

Furthermore, let (gn : n ∈ N) and G be the continuous functions and dense Gδ subset
of B given in Lemma 2. Now, by Proposition 2 part(i) and the fact that M+

1 ([0, 1]) is
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metrizable (and in particular in Stegall’s class) there exists a dense Gδ subset G′ of B on
which π∗∗A ◦ϕ is single-valued. Since G∩G′ ∈ C and the restriction of ϕ to G∩G′ remains
a minimal usco (see, Proposition 2 part(ii)) we see that there is no loss of generality in
assuming that B = G = G′. Now, by Theorem 3 it is sufficient to show that for each
n ∈ N, the set

Gn := {x ∈ B : the restriction of all the measures in ϕ(x) to π−1
A (gn(x)) coincide}

is residual in B. To accomplish this, let us fix n ∈ N and let Gn be the union of all the
open subset of B on which gn is constant and let Hn := B\Gn. By Lemma 4 we know
that Gn\Gn is first category in B. Hence we need only show that Hn\Gn is first category
in B. In fact, since Hn\Gn ⊆ g−1

n (A) ∩Hn we need only show that g−1
n (A) ∩Hn is first

category in B. Thus, in order to obtain a contradiction, let us assume that g−1
n (A) ∩Hn

is second category in B. Then, by [2, Proposition 3.2.5] there exists a non-empty open
subset U in Hn such that U ∩ g−1

n (A) is a dense Baire subset of U . Therefore, U ∩ g−1
n (A)

belongs to C and so by (iv) there is a non-empty open V of U such that gn|(U∩g−1
n (A)) is

constant on V ∩(U ∩g−1
n (A)) = V ∩g−1

n (A). Then, by the continuity of gn and the density
of g−1

n (A)∩V in V , gn is constant on V . However, V ∩Gn = ∅ and so we have our desired
contradiction. 2

Let A be an arbitrary subset of (0, 1) and let C be a class of Baire metric spaces. Then we
will say that a subset A of (0, 1) satisfies property (∗) with respect to C if for every B ∈ C
and every continuous function f : B → A there exists a non-empty open set U of B such
that f is constant on U .

Corollary 2 [4, Theorem 1]

(i) If there is an uncountable subset A of (0, 1) that satisfies property (∗) with respect
to the class of all Baire metric spaces then (C(KA)∗,weak∗) belongs to Stegall class
but is not fragmentable;

(ii) If there is an uncountable subset A of (0, 1) that satisfies property (∗) with respect
to the class of all Baire metric spaces of density at most card(A) then C(KA) is a
weak Asplund space but (C(KA)∗,weak∗) is not fragmentable

(iii) If there is a subset A of (0, 1) that satisfies property (∗) with respect to the class of
all Baire metric spaces of density at most card(A), but not property (∗) with respect
to the class of all Baire metric spaces then C(KA) is a weak Asplund space but
(C(KA)∗,weak∗) is not in Stegall’s class.

Proof: (i) From Theorem 1 it follows that KA is not fragmentable. On the other hand,
it is shown in [5, Theorem 3] that for a Banach space X, (X∗, weak∗) is in Stegall class if,
and only if, it is in Stegall class with respect to the class of all Baire metric spaces. The
result then follows from Theorem 4.

(ii) Again from Theorem 1 it follows that KA is not fragmentable. To show that C(KA)
is weak Asplund, we need the result [2, Theorem 3.2.2] that for a Banach space X if
(X∗, weak∗) is in the class of Stegall spaces with respect to the class of all Baire metric
spaces with density at most equal to the density of X then X is weak Asplund. The result
then follows from Theorem 4 and the fact that the density of C(KA) equals card(A).
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(iii) As mentioned in part (ii) if (C(KA)∗, weak∗) is in the class of Stegall spaces with
respect to the class of all Baire metric spaces with density at most equal to the density
of C(KA) then C(KA) is weak Asplund. The fact that (C(KA)∗, weak∗) is not a Stegall
space follows directly from Theorem 4. 2

Remark 1 Till this point, we have not dwelt upon the question of whether there are in
fact subsets of (0, 1) that satisfy any of the hypotheses of Corollary 2. For a discussion on
this see [3] and [4]. Let us mention here though that in all cases additional set-theoretic
axioms are required.

If A is a proper σ-ideal of subsets of 2N and N is a subset of a metric space M then we
will say that N is A -negligible if γ−1(N) ∈ A for each γ belonging to a residual subset
RN of C(2N; M) - the continuous function from 2N into M equipped with the topology of
uniform convergence. [Note: the residual set RN will in general depend upon the set N .]

For each n ∈ N and t ∈ 2n we define, Ct := {t′ ∈ 2N : t′|n = t} and C∅ := 2N. Further, for
each n ∈ N, we shall let Γn := {γ ∈ C(2N; M) : γ is constant on Ct for each t ∈ 2n}. A
simple compactness argument shows that for each n ∈ N,

⋃
k≥n Γk is dense in C(2N; M).

Lemma 5 Let (M, d) be a metric space. (i) If U is a dense open subset of M then
{γ ∈ C(2N; M) : γ(2N) ⊆ U} is a dense open subset of C(2N; M). (ii) If g : U → X
is a continuous function acting from a non-empty open subset U of M into a completely
regular topological space X that is not constant on any non-empty open subset of U then
there exists a residual subset of C(2N; M) such that for each γ in this set, g ◦ γ is 1-to-1
on γ−1(U) and γ−1(U) is clopen (i.e., both open and closed) in 2N.

Proof: (i) Firstly, it is easy to see that {γ ∈ C(2N; M) : γ(2N) ⊆ U} is open in C(2N; M).
Thus, it remains to show that it is dense. For each n ∈ N, let Γn(U) := {γ ∈ Γn :
γ(2N) ⊆ U}. It follows from the density of U in M and the already mentioned fact that⋃

n≥1 Γn is dense in C(2N; M) that
⋃

n≥1 Γn(U) is dense in C(2N; M) (and a subset of

{γ ∈ C(2N; M) : γ(2N) ⊆ U}).
(ii) Let V := U ∪M\U (which is a dense open subset of M) and for each n ∈ N let

Γ∗n := {γ ∈ Γn(V ) : (g ◦ γ)(t) 6= (g ◦ γ)(t′) if t, t′ ∈ γ−1(U) and t|n 6= t′|n}.

It is easy to check that for each n ∈ N,
⋃

k≥n Γ∗k is dense in C(2N; M). Now, for each
n ∈ N and γ̂ ∈ Γ∗n choose rn(γ̂) > 0 so that:

(i) B(γ̂(t); rn(γ̂)) ⊆ U for all t ∈ γ̂−1(U);

(ii) B(γ̂(t); rn(γ̂)) ⊆ M\U for all t ∈ γ̂−1(M\U);

(iii) g(B(γ̂(t); rn(γ̂))) ∩ g(B(γ̂(t′); rn(γ̂))) = ∅ for all t, t′ ∈ γ̂−1(U) such that t|n 6= t′|n.

One can now check that the set

⋂
n∈N

(⋃
k≥n

{γ ∈ C(2N; M) : there exists a γ̂ ∈ Γ∗k with max
t∈2N

[d(γ(t), γ̂(t))] < rk(γ̂)}

)
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is residual in C(2N; M) and has the desired properties. 2

From the previous lemma we can deduce that for any proper σ-ideal A of subsets of 2N

the A -negligible sets form a σ-ideal of subsets of M that contains all the first category
subsets of M . In addition, if M is a complete metric space and N ⊆ M has the Baire
property then one can show that N is A -negligible if, and only if, N is first category in
M . Thus, the interesting A -negligible sets are necessarily among those subsets of M that
are not very topologically respectable.

Given a proper σ-ideal A of subsets of 2N and a topological space X we say that X is
nearly Stegall with respect to A if for every complete metric space M and minimal usco
ϕ : M → 2X , {x ∈ M : ϕ(x) is not a singleton} is A -negligible. Thus, for any proper
σ-ideal A of subsets of 2N and any topological space X, if X is nearly Stegall with respect
to A then X is weakly Stegall.

As with Proposition 3, the proof of the following result is identical to that given in [2,
Theorem 3.1.5] and thus not presented here.

Proposition 4 Let X and Y be topological spaces and A be a proper σ-ideal of subsets
of 2N.

(i) Let g : X → Y be a perfect mapping onto Y . If X is nearly Stegall with respect to
A then Y is nearly Stegall with respect to A .

(ii) Let {Xn : n ∈ N} be a cover of X. If each Xn is closed and nearly Stegall with
respect to A , then X is nearly Stegall with respect to A .

(iii) If {Xn : n ∈ N} are nearly Stegall with respect to A then π∞n=1Xn is nearly Stegall
with respect to A .

By combining Riesz’s representation theorem with Proposition 4 we obtain the following
fact.

Corollary 3 Let A be a proper σ-ideal of subsets of 2N. Then for a compact Hausdorff
space K, (C(K)∗,weak∗) is nearly Stegall with respect to A if, and only if, M+

1 (K) is
nearly Stegall with respect to A .

Theorem 5 Let A be a proper σ-ideal of subsets of 2N and let A be any subset of
(0, 1) such that γ−1(A) ∈ A for each homeomorphic embedding of 2N into [0, 1]. Then
(C(KA)∗,weak∗) is nearly Stegall with respect to A . In particular, (C(KA), ‖ · ‖∞) is a
Gâteaux differentiability space.

Proof: By Corollary 3 it is sufficient to show that M+
1 (KA) is nearly Stegall with respect

to A . To this end, let ϕ : M → 2M
+
1 (KA) be a minimal usco acting from a complete

metric space M into M+
1 (KA). Furthermore, let (gn : n ∈ N) and G be the continuous

functions and dense Gδ subset of M given in Lemma 2. Now, by Proposition 2 part(i)
and the fact that M+

1 ([0, 1]) is metrizable (and in particular in Stegall’s class) there exists
a dense Gδ subset G′ of M on which π∗∗A ◦ ϕ is single-valued. Since C(2N; G ∩ G′) is a
residual subspace of C(2N; M) and the restriction of ϕ to G ∩ G′ is still a minimal usco
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(see, Proposition 2 part(ii)) there is no loss of generality in assuming that M = G = G′.
Now, by Theorem 3 it is sufficient to show that for each n ∈ N, the complement of the set

Gn := {x ∈ M : the restriction of all the measures in ϕ(x) to π−1
A (gn(x)) coincide}

is A -negligible in M . To this end, let us fix n ∈ N and the Gn be the union of all the
open subsets of M on which gn is constant and let Hn := M\Gn. By Lemma 4 we know
that Gn\Gn is first category in M and so A -negligible. Hence we need only show that
Hn\Gn is A -negligible since M\(Gn ∪ Hn) is a closed nowhere dense subset of M and
thus an A -negligible subset. In fact, since Hn\Gn ⊆ g−1

n (A) ∩ Hn we need only show
that g−1

n (A) ∩Hn is A -negligible. By Lemma 5 the set of all γ ∈ C(2N; M) for which (i)
γ(2N) ⊆ Gn ∪ Hn and (ii) (gn ◦ γ) is 1-to-1 on Dn

γ := γ−1(Hn), is residual in C(2N; M).
For any such γ we have the following

γ−1(g−1
n (A) ∩Hn) = (gn ◦ γ)−1(A) ∩Dn

γ ∈ A

since (i) (gn ◦ γ) is 1-to-1 on the clopen set Dn
γ and (ii) every continuous 1-to-1 mapping

from a clopen subset of 2N into [0, 1] can be extended to be a homeomorphic embedding
of 2N into [0, 1]. Thus, g−1

n (A) ∩Hn is A -negligible. 2

Lemma 6 There exists an everywhere second category subset A of (0, 1) and a proper
σ-ideal A of subsets of 2N such that γ−1(A) ∈ A for each homeomorphic embedding
γ : 2N → [0, 1].

Proof: Let κ be the least ordinal of cardinality 2ℵ0 , let {(γα
n : n ∈ N) : α < κ} be an

enumeration of all the sequences of continuous one-to-one functions from 2N into [0, 1]
and let {Eα : α < κ} be an enumeration of all the non-meagre Borel subsets of (0, 1).
Inductively, we may choose

aα ∈ Eα\{γβ
n(xβ) : n ∈ N and β < α} and xα ∈ 2N such that

γα
n (xα) 6= aβ for any n ∈ N and β ≤ α.

Set A := {aα : α < κ}. Then A is everywhere second category in (0, 1) and for any
sequence (γn : n ∈ N) of continuous one-to-one functions from 2N into [0, 1], (γ−1

n (A) :
n ∈ N) does not form a cover of 2N. So, if we take A to be the σ-ideal generated by
the inverse images, γ−1(A), as γ runs over all the continuous one-to-one functions from
2N into [0, 1], then A will be a proper σ-ideal of subsets of 2N such that γ−1(A) ∈ A for
each 1-to-1 mapping γ from 2N into [0, 1]. 2

Corollary 4 There exists a Banach space (X, ‖·‖) such that (X∗,weak∗) is weakly Stegall
but (X, ‖ · ‖) is not weak Asplund. In particular, (X, ‖ · ‖) is a Gâteaux differentiability
space that is not weak Asplund.

Proof: Let A be the set constructed in Lemma 6 and let A be the corresponding σ-
ideal on 2N. Then A satisfies the hypotheses of Theorem 5 with respect to A . Hence
(C(KA), weak∗) is nearly Stegall with respect to A and so weakly Stegall. On the other
hand, if (C(KA), ‖ ·‖∞) is weak Asplund then by [1], every closed subset of KA contains a
dense completely metrizable subspace. However, by Theorem 2 this implies A is meagre
(in fact perfectly meagre); which it is not. Therefore, (C(KA), ‖·‖∞) is not weak Asplund.
2
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3.1 Open problems

• Is (C(KA), ‖ · ‖∞) weak Asplund if, and only if, A is perfectly meagre? Certainly, if
(C(KA), ‖ · ‖∞) is weak Asplund then A must be perfectly meagre. On the other hand it
follows from Theorem 5 that if A is perfectly meagre then (C(KA), ‖ · ‖∞) is almost weak
Asplund.

• Is every Gâteaux differentiability space almost weak Asplund? Our example from Corol-
lary 4 does not answer this question as it is almost weak Asplund. The natural candidate
for a counter-example to this question is the space (C(K(0,1)), ‖ · ‖∞) which is not almost
weak Asplund (as the supremum norm is Gâteaux differentiable only on a first category
subset of C(K(0,1))), but might be a Gâteaux differentiability space.
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