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Abstract

We use the classical theory of Schwarz-Christoffel mappings to
find conformal maps from the upper half plane to triangular regions
in the hyperbolic plane. We then find the pullback of the (hyperbolic)
Laplace-Beltrami operator to the upper half plane.

1 Introduction

As is well known the hyperbolic plane H can be identified with the quotient
SL2(R)/SO(2). In this way a discrete subgroup Γ of SL2(R) generates a
discrete group action on the hyperbolic plane. The quotient H/Γ of the
hyperbolic plane by this group action can be identified with the so called
fundamental domain F , a subset of H which covers the hyperbolic plane
without any intersections under the action of Γ, H = ∪{γF̄ ; γ ∈ Γ}.
Ultimately we plan to study the spectral properties of the Laplace-Beltrami
operator on these fundamental domains. One approach to studying this
problem is to map the fundamental domain onto a region which is simpler to
analyse—for instance the unit disc or the upper half plane. By the Riemann
mapping theorem such a mapping can always be found which is, moreover,
conformal.
Although, we know the existence of a conformal map from our fundamental
domain into the upper half plane, in practise it is only possible to write
out this conformal map explicitly in a number of specific cases. One of these
cases is when the region is enclosed by three circular arcs, then the conformal
map is given in terms of hypergeometric functions. By a judicious choice of
parameters this three sided region can be made to correspond to a bona fide
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hyperbolic triangle which may be thought of as the fundamental domain F
for some discrete group action Γ. This is the problem we will discuss here.
From this mapping we then derive the expression for the pullback of the
Laplace-Beltrami operator to the upper half plane.

2 Schwarz-Christoffel Mappings to Regions

enclosed by Circular Arcs

A detailed discussion of the theorey of Schwarz-Christoffel mappings may be
found in [4]. We give a brief summary here.
In the case of a region, R ⊂ C, bounded by three circular arcs we seek a
function f(z) which maps the upper half plane C+ onto R such that the
‘vertices’ (A1, A2 and A3) of R are the image of distinguished points a1, a2

and a3 on the real axis—as noted above, for regions with more than three
sides an explicit expression for the appropriate conformal map is not, in
general, known. If the angle at the vertex Ai is παi then it is clear that in
the neighbourhood of ai f must have the form

f(z) = (z − ai)
αifi(z)

where fi is regular near ai and real on the real axis. Repeating this for each
vertex and substituting the ansatz into the Schwarzian derivative

{f, z} =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

we get that {f, z} is equal to a rational expresion plus a function g(z) which
is analytic in C+ and regular on the real axis. In fact, since the Schwarzian
derivative is invariant under fractional linear transformations, in particular
under the transformation which maps a circular boundary arc of R onto the
real axis, we see that {f, z} is real on the real axis. Consequently g(z) must
be real on the real axis and since it is analytic in C+ it reduces to a constant.
This gives us a third order differential equation satisfied by f(z). This can
be further simplified by noting that if F1, F2 are two linearly independant
solutions of

F ′′ + P (z)F ′ + Q(z)F = 0 (1)

then

f(z) =
F1(z)

F2(z)

satisfies
{f, z} = 2Q − P 2/2 − P ′ . (2)

In our case if we set a1 = 0, a2 = ∞ and a3 = 1 and use (2) to solve for P
and Q we see that (1) becomes the hypergeometric equation

z(1 − z)F ′′ + [c − (a + b + 1)z]F ′ − abF = 0 . (3)
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The constants a, b, c are given in terms of the angles αi by ([4] pg 206)

a = 1
2
(1 − α1 + α2 − α3) (4)

b = 1
2
(1 − α1 − α2 − α3) (5)

c = 1 − α1 . (6)

2.1 Schwarz-Christoffel Mappings to Hyperbolic Tri-
angles

Given that the region R is bounded by circular arcs with angles αi at each
of the vertices we have to choose the correct solutions (F1 and F2) of the
hypergeometric equation so that the image of f = F1/F2 is in some sense
a genuine hyperbolic triangle. We start by choosing F2 to be the usual
hypergeometric function

F2(z) = F (z; a, b, c) . (7)

Then it is known ([4] pg 314) that

F1(z) = z1−cF (z; a′, b′, c′) (8)

where

a′ = a − c + 1 = 1
2
(1 + α1 + α2 − α3) (9)

b′ = b − c + 1 = 1
2
(1 + α1 − α2 − α3) (10)

c′ = 2 − c = 1 + α1 (11)

is a linearly independant solution of the hypergeometric equation with the
same parameters (a, b and c) as F2. We would like to find the vertices
A1 = f(0), A2 = f(∞) and A3 = f(1) of the image, R, of f = F1/F2.
Since the hypergeometric function is bounded near the origin and c < 1,
A1 = f(0) = 0. We choose the branch of z1−c so that z1−c is real on the
positive real axis and

z1−c = |z|eiπ(1−c)

on the negative real axis. This means that

A3 = f(1) =
1 · F (1; a′, b′, c′)

F (1; a, b, c)

=
Γ(1 + α1)

Γ(1 − α1)

Γ
(

1
2
(1 − α1 + α2 + α3)

)
Γ

(
1
2
(1 + α1 + α2 + α3)

) Γ
(

1
2
(1 − α1 − α2 + α3)

)
Γ

(
1
2
(1 + α1 − α2 + α3)

) , (12)

where we have used the identity [3]

F (1; a, c, b) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
.
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To evaluate the limit of f(z) as z → ∞ we use the fact that the analytic
continuation of the hypergeometric function to points near infinity on the
plane cut along the real axis is given by ([2], pg 63)

F (z; a, b, c) =
Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(−z)−aF (1/z; a, 1 − c + a, 1 − b + a) +

Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(−z)−bF (1/z; b, 1 − c + b, 1 − a + b) . (13)

From the fact that the αi are positive it follows that

A2 = lim
z→∞

f(z) = lim
z→∞

z1−cF (z; a′, b′, c′)

F (z; a, b, c)

= eiπ(1−c) Γ(c′)Γ(a′ − b′)

Γ(a′)Γ(c′ − b′)

Γ(a)Γ(c − b)

Γ(c)Γ(a − b)

= eiπα1
Γ(1 + α1)Γ

(
1
2
(1 − α1 + α2 + α3)

)
Γ

(
1
2
(1 − α1 + α2 − α3)

)
Γ(1 − α1)Γ

(
1
2
(1 + α1 + α2 + α3)

)
Γ

(
1
2
(1 + α1 + α2 − α3)

) .

(14)

In summary A1 lies at the origin, A3 lies on the positive real axis and the
arcs A1A2, A1A3 are straight lines.
Consider the circular arc joining A2 and A3. This is part of a circle which
we denote S. Since α1 + α1 + α3 < π, A1 is exterior to S. It is easy to show
that given a circle S and a point A1 not inside S we can construct another
circle C0 which has centre A1 and intersects S at right angles, see figure 1.
If we rescale f(z) so that the radius of C0 is unity then the region R can
be thought of as a hyperbolic triangle in the Poincaré disc model where the
hyperbolic plane is identified with the interior of C0. Using the cosine rule for
hyperbolic triangles [1] we see that the hyperbolic length of the side joining
A1 and A2, ρ(A1, A2) satisfies

cosh(ρ(A1, A2)) =
cos(πα1) cos(πα2) + cos(πα3)

sin(πα1) sin(πα2)
.

On the other hand, the Euclidean length of this arc in the Poincaré disc
model (assuming one end is at the origin, [1] pg 148) is tanh (ρ(A1, A2)/2)
where

tanh

(
ρ(A1, A2)

2

)
=

√
cosh (ρ(A1, A2)) − 1

cosh (ρ(A1, A2)) + 1

=

√
cos(πα1 + πα2) + cos(πα3)

cos(πα1 − πα2) + cos(πα3)
.

So normalising the radius of C0 is equivalent to rescaling f(z) so that the
distance (equation 14) of A2 from the origin is given by the above quantity.
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Figure 1:

That is

f̂(z) = γ
F1(z)

F2(z)
= γ

z1−cF (z; a′, b′, c′)

F (z; a, b, c)

where

γ =

√
cos(πα1 + πα2) + cos(πα3)

cos(πα1 − πα2) + cos(πα3)

Γ(1 − α1)Γ
(

1
2
(1 + α1 + α2 + α3)

)
Γ

(
1
2
(1 + α1 + α2 − α3)

)
Γ(1 + α1)Γ

(
1
2
(1 − α1 + α2 + α3)

)
Γ

(
1
2
(1 − α1 + α2 − α3)

) ,

(15)
maps the upper half plane to a hyperbolic triangle R in the Poincaré disc
model.

Remark 2.1 Since γ is unique we can carry out the same normalisation
procedure as above using the arc from A1 to A3 and set the two values of γ
equal to one another. This gives us

Γ
(

1
2

+ θ
)
Γ

(
1
2
− θ

)
Γ

(
1
2

+ ϕ
)
Γ

(
1
2
− ϕ

) =

[
cos(πα1 + πα2) + cos(πα3)

cos(πα1 − πα2) + cos(πα3)
· cos(πα1 − πα3) + cos(πα2)

cos(πα1 + πα3) + cos(πα2)

] 1
2

,

where
θ = 1

2
(α1 − α2 + α3) , ϕ = 1

2
(α1 + α2 − α3) .

All that remains is to calculate how the Laplace-Beltrami operator on the
Poincaré disc transforms to an operator on the upper half plane.
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3 The Laplace-Beltrami Operator

We seek to study the eigenvalue problem ∆ϕ(w) = λϕ where

∆ ≡ −
(
1 − |w|2

)2 ∂2

∂w∂w̄

is the Laplace-Beltrami operator on the Poincaré disc (∂/∂w = 1/2(∂/∂x −
i∂/∂y) and similarly for ∂/∂w̄). Consider w = f̂(z) which maps the upper
half plane to a subset of the Poincaré disc. We use w to denote the coordinate
on the Poincaré disc and z to denote the coordinate on the upper half plane.
Since f̂ is holomorphic

∂

∂z
ϕ(f̂(z)) = ϕwf̂z ⇒ ∂2

∂z∂z̄
ϕ = |f̂z|2

∂2 ϕ

∂w∂w̄
,

where subscripts denote differentiation. Denoting the wronskian of two so-
lutions F1 and F2 by

W{F1, F2} ≡ F1,zF2 − F1F2,z

it is clear that

f̂z =
W{γF1, F2}

F 2
2

.

Consequently, the Laplace-Beltrami operator on the upper half plane be-
comes

∆ ≡ −

(
1 − |f̂ |2

)2

|f̂z|2
∂2

∂z∂z̄
= −(|γF1|2 − |F2|2)2

|W{γF1, F2}|2
∂2

∂z∂z̄
.

It is not difficult to show that the wronskian W = W{F1, F2} of two solutions
of the same hypergometric equation (with parameters a, b and c) satisfies the
following differential equation

dW

dz
= −c − (a + b + 1)z

z(1 − z)
W .

This has solution

W = C · (1 − z)c−a−b−1

zc
= Czα1−1(1 − z)α3−1 ,

where C is a constant. Using this we see that

W{γF1, F2} = γα1(1 − z)α3−1zα1−1 .

In summary the Laplace-Beltrami operator on the upper half plane is written

∆ ≡ −ρ2(x, y)

4

(
∂2

∂x2
+

∂2

∂y2

)
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where
ρ(x, y) = 1

α1
|z|1−α1|1 − z|1−α3

(
γ|F1|2 − γ−1|F2|2

)
,

γ is given by equation (15) and F1 and F2 by equations (8) and (7) along
with (9–11) and (4–6). Furthermore, the weight function ρ2(x, y) is real
and positive in the upper half plane with the following behaviour in the
neighbourhood of infinity

ρ(x, y) = c0|z|1+α2 + O(|z|) .

Here we have again used equation (13) and the constant, assuming α2 �= 0,
is

c0 =
2 sin(πα1) sin(πα2)

[(cos(πα1 − πα2) + cos(πα3))(cos(πα1 + πα2) + cos(πα3))]
1
2

×

Γ(1 − α1)Γ(1 + α1)Γ(α2)Γ(α2)

Γ
(

1
2
(1 − α1 + α2 − α3)

)
Γ

(
1
2
(1 + α1 + α2 − α3)

)
Γ

(
1
2
(1 + α1 + α2 + α3)

)
Γ

(
1
2
(1 − α1 + α2 + α3)

) .
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