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Abstract

We describe a ‘natural’ set of coordinates for fundamental domains
in the hyperbolic plane in the case when the fundamental domain is
triangular. The metric, the measure and the Laplace-Beltrami opera-
tor are calculated in this new coordinate system. As a byproduct we
give a hyperbolic analogue of the Euclidean expression of the area of
a triangle in terms of its base and height.

1 Introduction

As is well known the hyperbolic plane H can be identified with the quo-
tient SL2(R)/SO(2). In this way a discrete subgroup Γ of SL2(R) generates
a discrete group action on the hyperbolic plane. The quotient H/Γ of the
hyperbolic plane by this group action can be identified with the so called fun-
damental domain F , a subset of H which covers the hyperbolic plane without
any intersections under the action of Γ, H = ∪{γF̄ ; γ ∈ Γ}.
Ultimately we plan to study the spectral properties of the Laplace-Beltrami
operator on these fundamental domains. A major problem which was en-
countered in this study is that the boundary arcs of the fundamental domain
turn out to be quite complicated curves in terms of the usual coordinate
systems used on the hyperbolic plane—here we are thinking of cartesian or
geodesic polar coordinates in the Poincaré upper half plane or disc models.
To overcome this we propose a barycentric coordinate system which is de-
fined on any triangular domain. In terms of these barycentric coordinates a
triangular domain is mapped onto a Euclidean right-angled, isoceles triangle
(the side length of the isoceles triangle depends on the hyperbolic area of the
domain).
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In this report we begin by defining barycentric coordinates for an arbitrary
triangular region in the hyperbolic plane. Then we derive the transforma-
tion equations from barycentric coordinates to one of the standard coor-
dinate systems used on the hyperbolic plane (viz. the coordinates for the
Poincaré disc model). From this it is easy to derive the metric and thence
the Laplace-Beltrami operator for a given triangular domain in terms of
barycentric coordinates—for each domain the form of the Laplace-Beltrami
operator in barycentric coordinates will be different reflecting the geometry
of the domain.
The main advantage of barycentric coordinates is that a triangular region
in the hyperbolic plane is mapped onto a Euclidean (right-angled, isoce-
les) triangle. However, the coefficients of the Laplace-Beltrami operator are
trigonometric functions in the coordinates. We will see that by making a
trigonometric change of coordinates, and a suitable normalisation, the coeffi-
cients of the Laplace-Beltrami operator become algebraic expressions in the
coordinates—while the fundamental domain is still mapped onto a Euclidean
right-angled isoceles triangle. We illustrate this procedure with a simple ex-
ample at the end of this report.
Although we stated above that the boundary arcs of the fundamental do-
main turn out to be quite complicated curves in terms of the usual coordi-
nate systems, this is not entirely true. In the Klein disc model a triangular
fundamental domain is mapped onto a Eucliden triangle. However this has
the undesirable property that the shape of the Euclidean triangle depends
on where on the Klein disc the fundamental domain is located. Of course,
unlike barycentric coordinates, the image Euclidean triangle is not a right-
angled isoceles triangle. Rather the shape of the image triangle reflects the
geometry of the fundamental domain while the form of the Klein Laplacean
is fixed regardless of the fundamental domain. We note that the coefficients
of the Klein Laplacean are algebraic expressions in the coordinates. In future
investigations we will also investigate the spectral properties of the Laplace-
Beltrami operator using the Klein disc formulation of the Laplacean.

2 Barycentric coordinates on the hyperbolic

plane

Consider a triangular region F in the hyperbolic plane as in figure 1. The
boundary arcs of F are geodesic curves in the hyperbolic plane. We pick any
point z in the interior of F and would like to define the barycentric coordi-
nates for that point. As in the figure we join z to each of the three vertices of
F with a geodesic arc. In doing so we have formed three hyperbolic triangles
with areas A, A′ and A′′. This triple (A, A′, A′′) constitutes the barycentric
coordinates for the point z. In practise, since A+A′ +A′′ = constant, one of
these coordinates is redundant and when calculating the metric and Laplace-
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Figure 1: Barycentric Coordinates

Beltrami operator in barycentric coordinates we need to choose which two of
these three numbers we are to work with.

Before we calculate the relationship between barycentric and Poincaré
disc coordinates we need some simple geometric facts. First we consider a
triangle inscribed inside a circle as in figure 2. It requires only a few lines of
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Figure 2:

work to show that the angles ε and ε′ are equal.

Lemma 2.1 The defect of the triangle ABC in figure 3 is given by

π − (α + β + γ) = 2δ . (1)

Proof: We see immediately from the previous observation and figure 3 that
α = α′, β = β′ and δ = δ′. Then taking the sum of the angles of the triangle
A′B′C we get

α′ + δ′ + β′ + δ + γ = π

⇒ 2δ = π − (α + β + γ) .

�

We would now like to consider the triangle ABC as a hyperbolic triangle
in the Poincaré disc model. Since the sides AC and BC are straight the only
way to do this is to construct a circle, denoted C0, which intersects the circle
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Figure 3:

ABB′A′ in figure 3 at right angles and has C as the centre,1 see figure 4.
Then normalising figure 4 so that the circle C0 has radius one, we can think
of the interior of C0 as the Poincaré disc model of the hyperbolic plane and
the triangle ABC as a bona fide hyperbolic triangle.
It will be convenient for us to think of the Poincaré disc as the unit disc in
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Figure 4:

the complex plane. In this way the point C is identified with the origin and
we identify the points A and B with points a and z on the complex plane

1Given any circle S and any point C exterior to S we can construct a circle orthogonal
to S with centre C in the following way: Take a tangent line, t, to S which intersects C
(there are only two of them) and denote by P the point at which t intersects S. Then the
length |PC| is the radius of the circle centre C which is orthogonal to S.
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respectively.
It is a well known fact (see [2] pg 221, corollary 11) that—since the circles C0

and ABB′A′ are orthogonal to one another—the points A and A′ are related
by inversion through the circle C0. To be precise this means that

|CA| =
r2

|CA′|
where r is the radius of C0. Using the identification of the Poincaré disc with
the unit disc in the complex plane (i.e. r = 1) we see that A′ is identified
with the point a′ = 1/ā on C. From this we have the following theorem (but
first a technical definition):

Definition 2.1 Given z, a ∈ C we say that arg(z) > arg(a) if z/a is in the
upper half plane and arg(z) < arg(a) if z/a is in the lower half plane. If z/a
is real then clearly arg(z) = arg(a).

Theorem 2.1 If we identify the Poincaré disc with the unit disc on the
complex plane then for any hyperbolic triangle with vertices at the origin and
at points z and a inside the unit disc

e±iA =
z̄a − 1

zā − 1
. (2)

Here A is the hyperbolic area of the triangle, the left hand side assumes the
positive sign when arg(z) > arg(a) and the negative sign when arg(z) <
arg(a).

Proof: From the fact that the area of a hyperbolic triangle is equal to its
defect and the previous lemma we have that the left hand side of (2) is

e±iA = e±i2δ .

On the other hand, from figure 4 and assuming that arg(z) > arg(a), δ is
given by

δ = arg

(
−1

ā

)
− arg

(
z − 1

ā

)
.

This means that

exp(iA) = exp(i2δ)

= exp (i2 arg(−1/ā)) · exp (i2 arg(z̄ − 1/a))

=

(
−1

ā

) /(
−1

a

)
·
(

z̄ − 1

a

) /(
z − 1

ā

)

=
z̄a − 1

zā − 1
.

Likewise when arg(z) < arg(a) the above formula gives −δ and we get the
negative sign in the statement of the theorem. �
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We speculate that the above theorem is the hyperbolic analogue of the
Euclidean expression of the area of a triangle in terms of its base and height.
It is now simple to define the transformation law between barycentric and
Poincaré disc coordinates for a given hyperbolic triangle F . One of the
vertices of F we choose to place at the origin of the Poincaré disc—this
is in effect the choice, mentioned above, of which of the three barycentric
coordinates (A, A′, A′′) to regard as redundant. The other two vertices of F
are labelled by a and b in such a way that arg(b) > arg(a), see figure 5. It
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A
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a

b

0

Figure 5:

then follows from the theorem that

eiA =
z̄a − 1

zā − 1
, e−iA′

=
z̄b − 1

zb̄ − 1
. (3)

Eliminating z̄ and solving for z we get the inverse transformation

z =
a(1 − e−iA′

) − b(1 − eiA)

ābeiA − ab̄e−iA′ . (4)

3 The metric and the Laplace-Beltrami op-

erator in barycentric coordinates

It appeared natural to use complex notation in the above discussion so we will
continue with the derivation of the metric and the Laplace-Beltrami operator
using complex notation.
Suppose we have two coordinate systems, z = x + iy and w = A′ + iA, and
a non-holomorphic change of coordinates

z = z(w, w̄) =
a(1 − e−i(w+w̄)/2) − b(1 − e(w−w̄)/2)

ābe(w−w̄)/2 − ab̄e−i(w+w̄)/2
, (5)

as follows from equation (4). Suppose also that we have the metric, the
measure and the Laplace-Beltrami operator

ds2 =
(

dz dz̄
)
gz

(
dz̄
dz

)
(6)
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dµ = i ‖gz‖
1
2 dz ∧ dz̄ (7)

∆ ≡ −‖gz‖−
1
2

(
∂z̄ ∂z

)
‖gz‖

1
2 g−1

z

(
∂z

∂z̄

)
(8)

in terms of the coordinates z. Here gz is a 2 × 2 matrix (the metric tensor),
‖ · ‖ is the modulus of the determinant and dz, dz̄, ∂z, ∂z̄ are defined in the
usual way

dz = dx + idy , dz̄ = dx − idy

∂z =
1

2

(
∂

∂x
− i

∂

∂y

)
, ∂z̄ =

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Then the metric in the w-coordinates is given by gw = JgzJ
� where the

Jacobian is

J =

(
zw z̄w

zw̄ z̄w̄

)

and the derivatives follow from equation (5)

zw =
(i + 1)(|a|2b − a|b|2)ei(A−A′) − (a − b)(ābeiA + iab̄e−iA′

)

2
(
ābeiA − ab̄e−iA′)2 (9)

zw̄ =
(i − 1)(|a|2b − a|b|2)ei(A−A′) + (a − b)(ābeiA − iab̄e−iA′

)

2
(
ābeiA − ab̄e−iA′)2 . (10)

To get the measure and Laplace-Beltrami operator in terms of the new co-
ordinates w we just make the substitution gz → gw and z → w in equations
(7, 8).
In our case the metric gz is a scalar matrix

gz = gz I , gz =
2

(1 − |z|2)2

so that the above equations specialise to give the new metric, measure and
Laplace-Beltrami operator

gw =
2

(1 − |z|2)2

(
|zw|2 + |zw̄|2 2zw(zw̄)

2(zw)zw̄ |zw|2 + |zw̄|2

)
(11)

dµ = i
2 ||zw|2 − |zw̄|2|

(1 − |z|2)2
dw ∧ dw̄ (12)

∆ ≡ − (1 − |z|2)2

2 (|zw|2 − |zw̄|2)
(

∂w̄ ∂w

)



|zw|2+|zw̄|2
|zw|2−|zw̄|2 − 2zw(zw̄)

|zw|2−|zw̄|2

− 2(zw)zw̄

|zw|2−|zw̄|2
|zw|2+|zw̄|2
|zw|2−|zw̄|2




(
∂w

∂w̄

)
. (13)

These plus equations (4, 9, 10) allows us (at least in principle) to write the
Laplace-Beltrami operator in terms of A and A′.
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It is clear that by making a trigonometric change of coordinates (to for
instance cos(A), cos(A′)) the metric and the coefficients of the Laplace-
Beltrami operator become algebraic functions of the coordinates. However,
in terms of the coordinates cos(A) and cos(A′) the triangular region in the
hyperbolic plane is not mapped onto a Euclidean triangle as is the case with
barycentric coordinates. To overcome this one can normalise the coordinates
to An and A′

n so that they are in the interval [0, π/2]. Then in terms of
cos(A′

n) and sin(An) the triangular region in the hyperbolic plane is mapped
onto a Euclidean, right angled, isoceles triangle with side length one, and
the metric and operator are expressed in terms of algebraic functions of the
coordinates. We illustrate these ideas with the following example.

3.1 Example: (π/2, π/n, π/n) triangular regions on the
hyperbolic plane

Consider a triangle on the hyperbolic plane with angles (π/2, π/n, π/n) at
the vertices and n an integer strictly greater than 4. Then clearly the area
of the triangle is

Area = π − (π/2 + π/n + π/n) =
n − 4

n
· π

2
. (14)

The two sides of the triangle of equal length have hyperbolic length α where
[1]

cosh(α) =
cos(π/n)

sin(π/n)
.

If we place the vertex with the right angle at the origin of the Poincaré disc
and the other two vertices on the positive real and imaginary axes then by
construction

a = τ , b = iτ

where ([1] pg 148) it is easily shown that

τ = tanh(α/2) =

√
cos(π/n) − sin(π/n)

cos(π/n) + sin(π/n)
.

Then equations (4), (9) and (10) give us

z =
(1 − e−iA′

) − i(1 − eiA)

iτ (eiA + e−iA′)

zw =

(
1 + (1 + i)eiA

) (
1 + (1 − i)e−iA′) − 1

2τ (eiA + e−iA′)2

zw̄ = i

(
1 − (1 − i)eiA

) (
1 − (1 + i)e−iA′) − 1

2τ (eiA + e−iA′)2
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from which we get the metric gw by equation (11).

We denote our final set of coordinates by

ζ = u + iv = cos

(
n · A′

n − 4

)
+ i sin

(
n · A
n − 4

)
. (15)

Then it is clear from the area formula (14) that the arguments of the cosine
and sine take values in the interval [0, π/2] and hence the (π/2, π/n, π/n)
triangular region is mapped onto the Euclidean triangle

{u + iv; u, v ∈ [0, 1], u ≥ v} .

It follows from the definition (15) that

ζw =
n

2(n − 4)

(
cos

(
n · A
n − 4

)
− sin

(
n · A′

n − 4

))
= ζ̄w̄

ζw̄ =
n

2(n − 4)

(
− cos

(
n · A
n − 4

)
− sin

(
n · A′

n − 4

))
= ζ̄w

from which we can calculate the Jacobian

J =

(
wζ w̄ζ

wζ̄ w̄ζ̄

)
= −n − 4

2n

(
(1 − u2)−

1
2 − (1 − v2)−

1
2 (1 − u2)−

1
2 + (1 − v2)−

1
2

(1 − u2)−
1
2 + (1 − v2)−

1
2 (1 − u2)−

1
2 − (1 − v2)−

1
2

)
.

We then find the new metric from

gζ = J gwJ �

where we eliminate A and A′ in gw using

eiA =
(√

1 − v2 + iv
)n−4

n
, e−iA′

=
(
u − i

√
1 − u2

)n−4
n

.

Then from gζ we can calculate the measure and Laplace-Beltrami operator
from equations (7, 8) under the substitution z → ζ.
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